Considerable amounts of fish processing byproducts are discarded each year. By developing enzyme technologies for protein recovery and modification, production of a broad spectrum of food ingredients and industrial products may be possible. Hydrolyzed vegetable and milk proteins are widely used food ingredients. There are few hydrolyzed fish protein foods with the exception of East Asian condiments and sauces. This review describes various manufacturing techniques for fish protein hydrolysates using acid, base, endogenous enzymes, and added bacterial or digestive proteases. The chemical and biochemical characteristics of hydrolyzed fish proteins are discussed. In addition, functional properties of fish protein hydrolysates are described, including solubility, water-holding capacity, emulsification, and foam-forming ability. Possible applications of fish protein hydrolysates in food systems are provided, and comparison with other food protein hydrolysates where pertinent.
Protein hydrolysates (5, 10, and 15% degrees of hydrolysis) were made from minced salmon muscle treated with one of four alkaline proteases (Alcalase 2.4L, Flavourzyme 1000L, Corolase PN-L, and Corolase 7089) or endogenous digestive proteases. Reaction conditions were controlled at pH 7.5, 40 degrees C, and 7.5% protein content, and enzymes were added on the basis of standardized activity units (Azocoll units). Proteases were heat inactivated, insoluble and unhydrolyzed material was centrifuged out, and soluble protein fractions were recovered and lyophilized. Substrate specificities for the proteases was clearly different. Protein content for the hydrolysates ranged from 71.7 to 88.4%, and lipid content was very low. Nitrogen recovery ranged from 40.6 to 79.9%. The nitrogen solubility index was comparable to that of egg albumin and ranged from 92.4 to 99.7%. Solubility was high over a wide range of pH. The water-holding capacity of fish protein hydrolysates added at 1.5% in a model food system of frozen minced salmon patties was tested. Drip loss was on average lower for the fish protein hydrolysates than for egg albumin and soy protein concentrate, especially for Alcalase hydrolysates. Emulsification capacity for fish protein hydrolysates ranged quite a bit (75-299 mL of oil emulsified per 200 mg of protein), and some were better than soy protein concentrate (180 mL of oil emulsified per 200 mg of protein), but egg albumin had the highest emulsifying capacity (417 mL of oil emulsified per 200 mg of protein). Emulsification stability for fish protein hydrolysates (50-70%) was similar to or lower than those of egg albumin (73%) or soy protein concentrate (68%). Fat absorption was greater for 5 and 10% degrees of hydrolysis fish protein hydrolysates (3.22-5.90 mL of oil/g of protein) than for 15% hydrolysates, and all had greater fat absorption than egg albumin (2. 36 mL of oil/g of protein) or soy protein concentrate (2.90 mL of oil/g of protein).
Fish roe products are extremely valuable and currently enjoy expanding international and domestic markets. Caviars represent the best-known form of fish roe products; however, several other product forms are also consumed, including whole skeins and formulations with oils and cheese bases. Caviars are made from fish roe after the eggs have been graded, sorted, singled-out, salted or brined, and cured. Most caviar is marketed as a refrigerated or frozen food. Several types of caviar from different fish species are marketed as shelf-stable products. Market preferences for lower salt content have raised food safety concerns. Descriptions of and processing technologies for many delightful fish roe and caviar food products are presented here.
Polymeric packaging protects food during storage and transportation, and withstands mechanical and thermal stresses from high-temperature conventional retort or microwave-assisted food processing treatments. Chemical compounds that are incorporated within polymeric packaging materials to improve functionality, may interact with food components during processing or storage and migrate into the food. Once these compounds reach a specified limit, food quality and safety may be jeopardized. Possible chemical migrants include plasticizers, antioxidants, thermal stabilizers, slip compounds, and monomers. Chemical migration from food packaging is affected by a number of parameters including the nature and complexity of food, the contact time and temperature of the system, the type of packaging contact layer, and the properties of the migrants. Researchers study the migration of food-packaging compounds by exposing food or foodsimulating liquids to conventional and microwave heating and storage conditions, primarily through chromatographic or spectroscopic methods; from these data, they develop kinetic and risk assessment models. This review provides a comprehensive overview of the migration of chemical compounds into food or food simulants exposed to various heat treatments and storage conditions, as well as a discussion of regulatory issues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.