Bioprocesses converting carbon dioxide with molecular hydrogen to methane (CH4) are currently being developed to enable a transition to a renewable energy production system. In this study, we present a comprehensive physiological and biotechnological examination of 80 methanogenic archaea (methanogens) quantifying growth and CH4 production kinetics at hyperbaric pressures up to 50 bar with regard to media, macro-, and micro-nutrient supply, specific genomic features, and cell envelope architecture. Our analysis aimed to systematically prioritize high-pressure and high-performance methanogens. We found that the hyperthermophilic methanococci Methanotorris igneus and Methanocaldococcoccus jannaschii are high-pressure CH4 cell factories. Furthermore, our analysis revealed that high-performance methanogens are covered with an S-layer, and that they harbour the amino acid motif Tyrα444 Glyα445 Tyrα446 in the alpha subunit of the methyl-coenzyme M reductase. Thus, high-pressure biological CH4 production in pure culture could provide a purposeful route for the transition to a carbon-neutral bioenergy sector.
Accumulation of carbon dioxide (CO2), associated with global temperature rise, and drastically decreasing fossil fuels necessitate the development of improved renewable and sustainable energy production processes. A possible route for CO2 recycling is to employ autotrophic and hydrogenotrophic methanogens for CO2-based biological methane (CH4) production (CO2-BMP). In this study, the physiology and productivity of Methanobacterium thermaggregans was investigated in fed-batch cultivation mode. It is shown that M. thermaggregans can be reproducibly adapted to high agitation speeds for an improved CH4 productivity. Moreover, inoculum size, sulfide feeding, pH, and temperature were optimized. Optimization of growth and CH4 productivity revealed that M. thermaggregans is a slightly alkaliphilic and thermophilic methanogen. Hitherto, it was only possible to grow seven autotrophic, hydrogenotrophic methanogenic strains in fed-batch cultivation mode. Here, we show that after a series of optimization and growth improvement attempts another methanogen, M. thermaggregas could be adapted to be grown in fed-batch cultivation mode to cell densities of up to 1.56 g L−1. Moreover, the CH4 evolution rate (MER) of M. thermaggregans was compared to Methanothermobacter marburgensis, the CO2-BMP model organism. Under optimized cultivation conditions, a maximum MER of 96.1 ± 10.9 mmol L−1 h−1 was obtained with M. thermaggregans—97% of the maximum MER that was obtained utilizing M. marburgensis in a reference experiment. Therefore, M. thermaggregans can be regarded as a CH4 cell factory highly suited to be applicable for CO2-BMP.Electronic supplementary materialThe online version of this article (10.1007/s00253-018-9183-2) contains supplementary material, which is available to authorized users.
Lipids and amino acids are regarded as important biomarkers for the search for extraterrestrial life in the Solar System. Such biomarkers may be used to trace methanogenic life on other planets or moons in the Solar System, such as Saturn’s icy moon Enceladus. However, little is known about the environmental conditions shaping the synthesis of lipids and amino acids. Here, we present the lipid production and amino acid excretion patterns of the methanogenic archaeon Methanothermococcus okinawensis after exposing it to different multivariate concentrations of the inhibitors ammonium, formaldehyde, and methanol present in the Enceladian plume. M. okinawensis shows different patterns of lipid and amino acids excretion, depending on the amount of these inhibitors in the growth medium. While methanol did not show a significant impact on growth, lipid or amino acid production rates, ammonium and formaldehyde strongly affected these parameters. These findings are important for understanding the eco-physiology of methanogens on Earth and have implications for the use of biomarkers as possible signs of extraterrestrial life for future space missions in the Solar System.
Desulfurococcus amylolyticus DSM 16532 is an anaerobic and hyperthermophilic crenarchaeon known to grow on a variety of different carbon sources, including monosaccharides and polysaccharides. Furthermore, D. amylolyticus is one of the few archaea that are known to be able to grow on cellulose. Here, we present the metabolic reconstruction of D. amylolyticus’ central carbon metabolism. Based on the published genome, the metabolic reconstruction was completed by integrating complementary information available from the KEGG, BRENDA, UniProt, NCBI, and PFAM databases, as well as from available literature. The genomic analysis of D. amylolyticus revealed genes for both the classical and the archaeal version of the Embden-Meyerhof pathway. The metabolic reconstruction highlighted gaps in carbon dioxide-fixation pathways. No complete carbon dioxide-fixation pathway such as the reductive citrate cycle or the dicarboxylate-4-hydroxybutyrate cycle could be identified. However, the metabolic reconstruction indicated that D. amylolyticus harbors all genes necessary for glucose metabolization. Closed batch experimental verification of glucose utilization by D. amylolyticus was performed in chemically defined medium. The findings from in silico analyses and from growth experiments are discussed with respect to physiological features of hyperthermophilic organisms.Electronic supplementary materialThe online version of this article (10.1007/s12223-018-0612-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.