When, in 1956, Artificial Intelligence (AI) was officially declared a research field, no one would have ever predicted the huge influence and impact its description, prediction, and prescription capabilities were going to have on our daily lives. In parallel to continuous advances in AI, the past decade has seen the spread of broadband and ubiquitous connectivity, (embedded) sensors collecting descriptive high dimensional data, and improvements in big data processing techniques and cloud computing. The joint usage of such technologies has led to the creation of digital twins, artificial intelligent virtual replicas of physical systems. Digital Twin (DT) technology is nowadays being developed and commercialized to optimize several manufacturing and aviation processes, while in the healthcare and medicine fields this technology is still at its early development stage. This paper presents the results of a study focused on the analysis of the stateof-the-art definitions of DT, the investigation of the main characteristics that a DT should possess, and the exploration of the domains in which DT applications are currently being developed. The design implications derived from the study are then presented: they focus on socio-technical design aspects and DT lifecycle. Open issues and challenges that require to be addressed in the future are finally discussed.
Our research work describes a team of human Digital Twins (DTs), each tracking fitness-related measurements describing an athlete's behavior in consecutive days (e.g. food income, activity, sleep). After collecting enough measurements, the DT firstly predicts the physical twin performance during training and, in case of non-optimal result, it suggests modifications in the athlete's behavior. The athlete's team is integrated into SmartFit, a software framework for supporting trainers and coaches in monitoring and manage athletes' fitness activity and results. Through IoT sensors embedded in wearable devices and applications for manual logging (e.g. mood, food income), SmartFit continuously captures measurements, initially treated as the dynamic data describing the current physical twins' status. Dynamic data allows adapting each DT's status and triggering the DT's predictions and suggestions. The analyzed measurements are stored as the historical data, further processed by the DT to update (increase) its knowledge and ability to provide reliable predictions. Results show that, thanks to the team of DTs, SmartFit computes trustable predictions of the physical twins' conditions and produces understandable suggestions which can be used by trainers to trigger optimization actions in the athletes' behavior. Though applied in the sport context, SmartFit can be easily adapted to other monitoring tasks. INDEX TERMS Counterfactual explanations, digital twins, Internet of Things, machine learning, smart health, sociotechnical design, wearables.
Abstract. With the widespread of Internet of Things' devices, sensors, and applications the quantity of collected data grows enormously and the need of extracting, merging, analyzing, visualizing, and sharing it paves the way for new research challenges. This ongoing revolution of how personal devices are used and how they are becoming more and more wearable has important influences on the most well established definitions of end user and end-user development. The paper presents an analysis of the most diffused applications that allow end users to aggregate quantified-self data, originated by several sensors and devices, and to use it in personalized ways. From the outcomes of the analysis, we present a classification model for Internet of Things and new EUD paradigm and language that extends the ones existing in the current state of the art Internet of Things.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.