Wilson disease (WD) is an autosomal recessive disorder characterized by the toxic accumulation of copper in a number of organs, particularly the liver and brain. As shown in the accompanying paper, linkage disequilibrium & haplotype analysis confirmed the disease locus to a single marker interval at 13q14.3. Here we describe a partial cDNA clone (pWD) which maps to this region and shows a particular 76% amino acid homology to the Menkes disease gene, Mc1. The predicted functional properties of the pWD gene together with its strong homology to Mc1, genetic mapping data and identification of four independent disease-specific mutations, provide convincing evidence that pWD is the Wilson disease gene.
The epilepsies are a common, clinically heterogeneous group of disorders defined by recurrent unprovoked seizures 1 . Here we describe identification of the causative gene in autosomal-dominant partial epilepsy with auditory features (ADPEAF, MIM 600512), a rare form of idiopathic lateral temporal lobe epilepsy characterized by partial seizures with auditory disturbances 2,3 . We constructed a complete, 4.2-Mb physical map across the genetically implicated disease-gene region, identified 28 putative genes ( Fig. 1) and resequenced all or part of 21 genes before identifying presumptive mutations in one copy of the leucine-rich, glioma-inactivated 1 gene (LGI1) in each of five families with ADPEAF. Previous studies have indicated that loss of both copies of LGI1 promotes glial tumor progression. We show that the expression pattern of mouse Lgi1 is predominantly neuronal and is consistent with the anatomic regions involved in temporal lobe epilepsy. Discovery of LGI1 as a cause of ADPEAF suggests new avenues for research on pathogenic mechanisms of idiopathic epilepsies.Correspondence should be addressed to R.O. (e-mail: ro6@columbia.edu). NIH Public Access Author ManuscriptNat Genet. Author manuscript; available in PMC 2008 December 22. Published in final edited form as:Nat Genet. 2002 March ; 30(3): 335-341. doi:10.1038/ng832. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author ManuscriptIn 1995 we mapped the ADPEAF locus to a 10-cM region on chromosome 10q24 in a single extended pedigree 2 . Linkage was subsequently reported to an overlapping interval in another large family, narrowing the minimal genetic region to approximately 3 cM, assuming the causative gene was the same 4 . Analysis of additional pedigrees confirmed the linkage but failed to narrow the region further 5-7 . To screen for disease-related mutations, we resequenced all coding-exon and bordering-intron sequences from positional candidate genes in the overlap interval in one affected individual from each of three ADPEAF pedigrees showing linkage to chromosome 10q24 (families 6610, A and B; Fig. 2) 2,7 . We then genotyped putative diseaserelated mutations in all available family members from the three linked pedigrees, all family members from two smaller families with ADPEAF (families C and D; Fig. 2) and 123 unrelated control individuals.Resequencing of LGI1 identified presumptive mutations in each of the five families with ADPEAF (Table 1 and Fig. 2). All tested affected individuals from the five families harbored a single copy of a putative disease mutation, as did all obligate carriers and individuals classified as 'unknown' who were found to carry the disease-linked haplotype (Fig. 2). Several unaffected individuals also carried the disease haplotype and presumptive mutation. Whether these individuals manifest subclinical signs of disease or have undergone recent changes in affection status is not yet known, but the results are consistent with our previous estimate of 71% disease-gene penetrance in family 6610 (ref.2).To di...
ClpB is thought to be involved in proteolysis because of its sequence similarity to the ClpA subunit of the ClpA-ClpP protease. It has recently been shown that ClpP is a heat shock protein. Here we show that ClpB is the Escherichia coli heat shock protein F84.1. The F84.1 protein was overproduced in strains containing the clpB gene on a plasmid and was absent from two-dimensional gels from a clpB null mutation. Besides possessing a slower growth rate at 44 degrees C, the null mutant strain had a higher rate of death at 50 degrees C. We used reverse transcription of in vivo mRNA to show that the clpB gene was expressed from a sigma 32-specific promoter consensus sequence at both 37 and 42 degrees C. We noted that the clpB+ gene also caused the appearance of a second protein spot, F68.5, on two-dimensional gels. This spot was approximately 147 amino acids smaller than F84.1 and most probably is the result of a second translational start on the clpB mRNA. F68.5 can be observed on many published two-dimensional gels of heat-induced E. coli proteins, but the original catalog of 17 heat shock proteins did not include this spot.
Wilson disease (WD) is an autosomal recessive disorder characterized by toxic accumulation of copper in the liver and subsequently in the brain and other organs. On the basis of sequence homology to known genes, the WD gene (ATP7B) appears to be a copper-transporting P-type ATPase. A search for ATP7B mutations in WD patients from five population samples, including 109 North American patients, revealed 27 distinct mutations, 18 of which are novel. A composite of published findings shows missense mutations in all exons-except in exons 1-5, which encode the six copper-binding motifs, and in exon 21, which spans the carboxy-terminus and the poly(A) tail. Over one-half of all WD mutations occur only rarely in any population sample. A splice-site mutation in exon 12 accounts for 3% of the WD mutations in our sample and produces an in-frame, 39-bp insertion in mRNA of patients homozygous, but not heterozygous, for the mutation. The most common WD mutation (His1069Glu) was represented in approximately 38% of all the WD chromosomes from the North American, Russian, and Swedish samples. In several population cohorts, this mutation deviated from Hardy-Weinberg equilibrium, with an overrepresentation of homozygotes. We did not find a significant correlation between His1069Glu homozygosity and several clinical indices, including age of onset, clinical manifestation, ceruloplasmin activity, hepatic copper levels, and the presence of Kayser-Fleischer rings. Finally, lymphoblast cell lines from individuals homozygous for His1069Glu and 4 other mutations all demonstrated significantly decreased copper-stimulated ATPase activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.