Objective:The aim of the study was to evaluate the clinical phenotypes of glucokinase-maturity-onset diabetes of the young (GCK-MODY) pediatric patients from Southwest Poland and to search for phenotype-genotype correlations.Methods:We conducted a retrospective analysis of data on 37 CGK-MODY patients consisting of 21 girls and 16 boys of ages 1.9-20.1 (mean 12.5±5.2) years, treated in our centre in the time period between 2002 and 2013.Results:GCK-MODY carriers were found in a frequency of 3% among 1043 diabetes mellitus (DM) patients and constituted the second most numerous group of DM patients, following type 1 DM, in our centre. The mean age of GCK-MODY diagnosis was 10.4±4.5 years. The findings leading to the diagnosis were impaired fasting glucose (IFG) (15/37), symptoms of hyperglycemia (4/37), and a GCK-MODY family history (18/37). Mean fasting blood glucose level was 6.67±1.64 mmol/L. In the sample, there were patients with normal values (4/37), those with DM (10/37), and IFG (23/37). In OGTT, 120 min glucose level was normal in 8, diabetic in 2, and characteristic for glucose intolerance in 27 of the 37 cases. Twelve of the 37 cases (32%) were identified as GCK-MODY carriers. In the total group, mean C-peptide level was 2.13±0.65 ng/mL and HbA1c was 6.26±0.45% (44.9±-18 mmol/mol). Thirty-two patients had a family history of DM. DM autoantibodies were detected in two patients. The most common mutations were p.Gly318Arg (11/37) and p.Val302Leu (8/37). There was no correlation between type of mutations and plasma glucose levels.Conclusion:The phenotype of GCK-MODY patients may vary from those characteristic for other DM types to an asymptomatic state with normal FG with no correlation with genotype.
Diabetic macular edema (DME) is one of the main causes of visual impairment in patients of working age. DME occurs in 4% of patients at all stages of diabetic retinopathy. Using a subthreshold micropulse laser is an alternative or adjuvant treatment of DME. Micropulse technology demonstrates a high safety profile by selectively targeting the retinal pigment epithelium. There are no standardized protocols for micropulse treatment, however, a 577 nm laser application over the entire macula using a 200 μm retinal spot, 200 ms pulse duration, 400 mW power, and 5% duty cycle is a cost-effective, noninvasive, and safe therapy in mild and moderate macular edemas with retinal thickness below 400 μm. Micropulse lasers, as an addition to the current gold-standard treatment for DME, i.e., anti-vascular endothelial growth factor (anti-VEGF), stabilize the anatomic and functional retinal parameters 3 months after the procedure and reduce the number of required injections per year. This paper discusses the published literature on the safety and application of subthreshold micropulse lasers in DME and compares them with intravitreal anti-VEGF or steroid therapies and conventional grid laser photocoagulation. Only English peer-reviewed articles reporting research within the years 2010–2022 were included.
Introduction Numerous studies described a link between weather phenomena and an increased incidence of cardiovascular and cerebrovascular events. We report a case of ocular decompression retinopathy with massive premacular haemorrhage secondary to acute intraocular pressure reduction in a patient with acute primary angle closure. At the time of admission, a change in weather conditions occurred with high temperatures and a strong Foehn wind known locally as halny. Case description A healthy 56-year-old man with acute primary angle closure who developed severe ocular decompression retinopathy with large prefoveal subhyaloid haemorrhage after pharmacological treatment was admitted to the hospital. The patient was elected for surgery and underwent vitrectomy with improvement of visual acuity to the baseline vision. Conclusions This report suggests that, in addition to an abrupt reduction in intraocular pressure as a causative factor, massive ocular decompression retinopathy may be significantly influenced also by environmental factors such as halny.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.