Due to numerous mutations in the spike protein, the SARS-CoV-2 variant of concern Omicron (B.1.1.529) raises serious concerns since it may significantly limit the antibody-mediated neutralization and increase the risk of reinfections. While a rapid increase in the number of cases is being reported worldwide, until now there has been uncertainty about the efficacy of vaccinations and monoclonal antibodies. Our in vitro findings using authentic SARS-CoV-2 variants indicate that in contrast to the currently circulating Delta variant, the neutralization efficacy of vaccine-elicited sera against Omicron was severely reduced highlighting T-cell mediated immunity as essential barrier to prevent severe COVID-19. Since SARS-CoV-2 Omicron was resistant to casirivimab and imdevimab genotyping of SARS-CoV-2 may be needed before initiating mAb treatment. Variant-specific vaccines and mAb agents may be required to treat Omicron and other emerging variants of concern.
The immediate upstream region of the mouse interleukin 2 (Il‐2) gene harbors a strong transcriptional enhancer. This enhancer contains most, if not all of the sequence elements necessary for the T cell specific induction of the Il‐2 gene by the phorbol ester TPA and the plant lectin Concanavalin A. DNase I footprinting studies with fractionated extracts obtained from induced and uninduced E14 T cells revealed numerous recognition sites for potential trans‐acting factors. Five of these sites are also recognized by the TPA‐activated HeLa cell factors AP‐1 and AP‐3. Other sites including two TATA‐boxes, two purine‐rich sequence motifs and two copies of the GGGPuTTTCAA motif are recognized by lymphocyte specific factors. The latter motif is highly conserved between several lymphokine genes and is therefore designated as a T cell element (TCE). In E14 T cells, pentamers of the distal TCEd confer an activity similar to that of the entire Il‐2 enhancer, whereas in B and HeLa cells, the TCEd‐pentamer is inactive as is the Il‐2 enhancer. These data indicate the involvement of the TCEd and its recognition factor(s) in the cell type specific induction of the Il‐2 gene during T cell activation.
The precursor oligosaccharide donor for protein N-glycosylation in eukaryotes, Glc3Man9GlcNAc(2)-P-P-dolichol, is synthesized in two stages on both leaflets of the rough endoplasmic reticulum (ER). There is good evidence that the level of dolichyl monophosphate (Dol-P) is one rate-controlling factor in the first stage of the assembly process. In the current topological model it is proposed that ER proteins (flippases) then mediate the transbilayer movement of Man-P-Dol, Glc-P-Dol, and Man5GlcNAc(2)-P-P-Dol from the cytoplasmic leaflet to the lumenal leaflet. The rate of flipping of the three intermediates could plausibly influence the conversion of Man5GlcNAc(2)-P-P-Dol to Glc3Man(9)GlcNAc(2)-P-P-Dol in the second stage on the lumenal side of the rough ER. This article reviews the current understanding of the enzymes involved in the de novo biosynthesis of Dol-P and other polyisoprenoid glycosyl carrier lipids and speculates about the role of membrane proteins and enzymes that could be involved in the transbilayer movement of the lipid intermediates and the recycling of Dol-P and Dol-P-P discharged during glycosylphosphatidylinositol anchor biosynthesis, N-glycosylation, and O- and C-mannosylation reactions on the lumenal surface of the rough ER.
Necroptosis represents a key programmed cell death pathway involved in various physiological and pathophysiological conditions. However, the role of reactive oxygen species (ROS) in necroptotic signaling has remained unclear. In the present study, we identify ROS as critical regulators of BV6/tumor necrosis factor-α (TNFα)-induced necroptotic signaling and cell death. We show that BV6/TNFα-induced cell death depends on ROS production, as several ROS scavengers such as butylated hydroxyanisole, N-acetylcysteine, α-tocopherol and ethyl pyruvate significantly rescue cell death. Before cell death, BV6/TNFα-stimulated ROS generation promotes stabilization of the receptor-interacting protein kinase 1 (RIP1)/RIP3 necrosome complex via a potential positive feedback loop, as on the one hand radical scavengers attenuate RIP1/RIP3 necrosome assembly and phosphorylation of mixed lineage kinase domain like (MLKL), but on the other hand silencing of RIP1 or RIP3 reduces ROS production. Although MLKL knockdown effectively decreases BV6/TNFα-induced cell death, it does not affect RIP1/RIP3 interaction and only partly reduces ROS generation. Moreover, the deubiquitinase cylindromatosis (CYLD) promotes BV6/TNFα-induced ROS generation and necrosome assembly even in the presence of BV6, as CYLD silencing attenuates these events. Genetic silencing of phosphoglycerate mutase 5 or dynamin-related protein 1 (Drp1) fails to protect against BV6/TNFα-induced cell death. By demonstrating that ROS are involved in regulating BV6/TNFα-induced necroptotic signaling, our study provides new insights into redox regulation of necroptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.