Global change, especially land‐use intensification, affects human well‐being by impacting the delivery of multiple ecosystem services (multifunctionality). However, whether biodiversity loss is a major component of global change effects on multifunctionality in real‐world ecosystems, as in experimental ones, remains unclear. Therefore, we assessed biodiversity, functional composition and 14 ecosystem services on 150 agricultural grasslands differing in land‐use intensity. We also introduce five multifunctionality measures in which ecosystem services were weighted according to realistic land‐use objectives. We found that indirect land‐use effects, i.e. those mediated by biodiversity loss and by changes to functional composition, were as strong as direct effects on average. Their strength varied with land‐use objectives and regional context. Biodiversity loss explained indirect effects in a region of intermediate productivity and was most damaging when land‐use objectives favoured supporting and cultural services. In contrast, functional composition shifts, towards fast‐growing plant species, strongly increased provisioning services in more inherently unproductive grasslands.
Many experiments have shown that loss of biodiversity reduces the capacity of ecosystems to provide the multiple services on which humans depend. However, experiments necessarily simplify the complexity of natural ecosystems and will normally control for other important drivers of ecosystem functioning, such as the environment or land use. In addition, existing studies typically focus on the diversity of single trophic groups, neglecting the fact that biodiversity loss occurs across many taxa and that the functional effects of any trophic group may depend on the abundance and diversity of others. Here we report analysis of the relationships between the species richness and abundance of nine trophic groups, including 4,600 above- and below-ground taxa, and 14 ecosystem services and functions and with their simultaneous provision (or multifunctionality) in 150 grasslands. We show that high species richness in multiple trophic groups (multitrophic richness) had stronger positive effects on ecosystem services than richness in any individual trophic group; this includes plant species richness, the most widely used measure of biodiversity. On average, three trophic groups influenced each ecosystem service, with each trophic group influencing at least one service. Multitrophic richness was particularly beneficial for 'regulating' and 'cultural' services, and for multifunctionality, whereas a change in the total abundance of species or biomass in multiple trophic groups (the multitrophic abundance) positively affected supporting services. Multitrophic richness and abundance drove ecosystem functioning as strongly as abiotic conditions and land-use intensity, extending previous experimental results to real-world ecosystems. Primary producers, herbivorous insects and microbial decomposers seem to be particularly important drivers of ecosystem functioning, as shown by the strong and frequent positive associations of their richness or abundance with multiple ecosystem services. Our results show that multitrophic richness and abundance support ecosystem functioning, and demonstrate that a focus on single groups has led to researchers to greatly underestimate the functional importance of biodiversity.
One contribution of 17 to a theme issue 'Biodiversity and ecosystem functioning in dynamic landscapes'. Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity-multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a landuse intensity (LUI) gradient. The diversity of above-and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the communitylevel effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6% of the species tested. Speciesspecific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities.
The efficacy and toxicity of a combination of fludarabine and cyclophosphamide (FC) was evaluated in patients with B‐cell chronic lymphocytic leukaemia (CLL). Between April 1997 and July 1998, 36 patients with CLL (median age 59 years) received a regimen that consisted of fludarabine 30 mg/m2 in a 30‐min IV infusion, d 1–3, and cyclophosphamide 250 mg/m2 in a 30‐min IV infusion on d 1–3. Cycles were repeated every 28 d. Twenty‐one patients had received between one and three different treatment regimens prior to the study, while 15 patients had received no prior therapy. The median Eastern Cooperative Oncology Group performance score was 1. One patient was at Binet stage A, 18 were stage B and 17 patients were stage C. Objective responses, assessed according to the revised guidelines of the National Cancer Institute‐sponsored Working Group, were recorded in 29 out of 32 assessable patients (90·6%). Twenty‐four partial remissions and five complete remissions were observed. Two patients showed no change and one patient showed disease progression. At February 2000, three of the responders had relapsed. Severe neutropenia, anaemia and thrombocytopenia (Common Toxicity Criteria grade 3 and 4) were observed in 25, six and six patients (69·4%, 16·7% and 16·7%) respectively. Other side‐effects were uncommon. No treatment‐related deaths and no grade 3 or 4 infections occurred. We conclude that the combination of fludarabine and cyclophosphamide showed significant activity in patients with CLL. Myelosuppression was the major side‐effect. These results warrant further study on the FC combination in randomized trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.