Due to the widespread of the COVID-19 pandemic, the SARS-CoV-2 genome is evolving in diverse human populations. Several studies already reported different strains and an increase in the mutation rate. Particularly, mutations in SARS-CoV-2 spike-glycoprotein are of great interest as it mediates infection in human and recently approved mRNA vaccines are designed to induce immune responses against it. We analyzed 146,920 SARS-CoV-2 genome assemblies and 2,393 NGS datasets from GISAID, NCBI Virus and NCBI SRA archives focusing on non-synonymous mutations in the spike protein. Only around 13.6% of the samples contained the wild-type spike protein with no variation from the reference. Among the spike protein mutants, we confirmed a low mutation rate exhibiting less than 10 non-synonymous mutations in 99.98% of the analyzed sequences, but the mean and median number of spike protein mutations per sample increased over time. 2,592 distinct variants were found in total. The majority of the observed variants were recurrent, but only nine and 23 recurrent variants were found in at least 0.5% of the mutant genome assemblies and NGS samples, respectively. Further, we found high-confidence subclonal variants in about 15.1% of the NGS data sets with mutant spike protein, which might indicate co-infection with various SARS-CoV-2 strains and/or intra-host evolution. Lastly, some variants might have an effect on antibody binding or T-cell recognition. These findings demonstrate the increasing importance of monitoring SARS-CoV-2 sequences for an early detection of variants that require adaptations in preventive and therapeutic strategies.
Mutations are regarded as ideal targets for cancer immunotherapy. As neoepitopes with strict lack of expression in any healthy tissue, they are expected to be safe and could bypass the central tolerance mechanisms. Recent advances in nucleic acid sequencing technologies have revolutionized the field of genomics, allowing the readily targeting of mutated neoantigens for personalized cancer vaccination. We demonstrated in three independent murine tumor models that a considerable fraction of non-synonymous cancer mutations is immunogenic and that unexpectedly the immunogenic mutanome is pre-dominantly recognized by CD4+ T cells. RNA vaccination with such MHC class II restricted immunogenic mutations leads to infiltration of CD4+ and CD8+ T cells into the tumor, reduces intratumoral regulatory T cells and ultimately confers strong anti-tumor activity. Encouraged by these findings we set up a process comprising mutation detection by exome sequencing, selection of vaccine targets by solely bioinformatical prioritization of mutated epitopes predicted to be abundantly expressed and presented on MHC class II molecules. Synthetic mRNA vaccines encoding multiple of these prioritized mutated epitopes induce potent tumor control and complete rejection of established aggressively growing tumors in mice. Moreover, we demonstrate that CD4+ T cell neoepitope vaccination primes CTL responses against an independent immunodominant antigen in tumor bearing mice indicating orchestration of antigen spread. Our findings reveal that cancer mutation based MHC class II restricted epitopes are attractive vaccination targets and provide the preclinical proof of concept for an integrated process from tumor sample to a cancer vaccine customized to the unique repertoire of each patient`s tumor. Citation Format: Mathias Vormehr, Sebastian Kreiter, Niels van de Roemer, Mustafa Diken, Martin Löwer, Fulvia Vascotto, Jan Diekmann, Sebastian Boegel, Barbara Schroers, Arbel D. Tadmor, Özlem Türeci, Ugur Sahin. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. [abstract]. In: Proceedings of the CRI-CIMT-EATI-AACR Inaugural International Cancer Immunotherapy Conference: Translating Science into Survival; September 16-19, 2015; New York, NY. Philadelphia (PA): AACR; Cancer Immunol Res 2016;4(1 Suppl):Abstract nr A110.
One of the hallmarks of cancer is the inherent instability of the genome leading to multiple genomic alterations and epigenetic changes that ultimately drive carcinogenesis. These processes lead to a unique molecular profile of every given tumor and to substantial intratumoral heterogeneity of cancer tissues. Recently, a series of independent reports revealed that pre-formed neoantigen specific T-cell responses are of crucial relevance for the clinical efficacy of immune checkpoint inhibitors. However, spontaneous immune recognition of neoantigens seems to be a rare event with only less than 1% of mutations inducing a T-cell response in the tumor-bearing patient. Accordingly, only patients with a high burden of mutations profit from currently approved therapies. To overcome this restriction, the IVAC® MUTANOME-project harnesses the individual patient's mutation profile by manufacturing highly potent neoantigen-coding RNA vaccines. To this end, the individual mutation repertoire is identified by next-generation-sequencing, potentially immunogenic mutations are selected and incorporated into a poly-epitopic RNA vaccine that is tailored to activate and expand the individual patient's neoantigen-specific CD4+ and CD8+ T cells. A phase I study to test this novel concept of an active individualized cancer vaccine for the treatment of malignant melanoma was initiated in 2013 (NCT02035956). Notably, BioNTech RNA Pharmaceutical's IVAC® MUTANOME trial is the first-in-human trial that introduces a fully personalized RNA vaccine for the treatment of malignant melanoma. The objective of this clinical trial is to study the feasibility, safety, tolerability, immunogenicity and the potential clinical activity of the IVAC® MUTANOME approach. The recruitment of a patient into the trial triggers the multi-step IVAC® MUTANOME process covering (i) the receipt and processing of tumor and blood sample specimens, (ii) the identification, prioritization and confirmation of mutations, (iii) testing of pre-existing immunity against identified tumor mutations, (iv) the selection of mutant neoantigen sequences as vaccine targets, (v) design, production of a DNA lead structure, (vi) GMP manufacturing and release of the patient-specific mRNA, (vii) shipment to the clinical trial site and (viii) the administration of the IMP to patients. Detailed information on the trial, the recruitment and treatment status as well as data on the assessment of vaccine induced immune responses will be presented. Citation Format: Matthias Miller, Carmen Loquai, Björn-Philipp Kloke, Sebastian Attig, Nicole Bidmon, Stefanie Bolte, Valesca Bukur, Evelyna Derhovanessian, Jan Diekmann, Angela Filbry, Sandra Heesch, Christoph Hoeller, Klaus Kuehlcke, David Langer, Martin Loewer, Felicitas Mueller, Inga Ortseifer, Burkhard Otte, Anna Paruzynski, Richard Rae, Barbara Schroers, Christine Seck, Kristina Spiess, Arbel D. Tadmor, Isabel Vogler, Mathias Vormehr, Alexandra Kemmer-Brueck, Andreas N. Kuhn, Ulrich Luxemburger, Sebastian Kreiter, Jochen Utikal, Stephan Grabbe, Oezlem Tuereci, Ugur Sahin. IVAC® MUTANOME - A first-in-human phase I clinical trial targeting individual mutant neoantigens for the treatment of melanoma. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr CT022.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.