The Nr4a subfamily of nuclear receptor comprises three members in mammalian cells: Nur77/Nr4a1, Nurr1/Nr4a2, and Nor1/Nr4a3. Nr4a proteins play key roles in the regulation of glucose homeostasis in peripheral metabolic tissues. However, their biological functions in -cells remain relatively uncharacterized. Here we sought to investigate the potential role of Nor1 in the regulation of -cell mass and, in particular, -cell survival/apoptosis. We used histological analysis to examine the consequences of genetic deletion of either Nur77 and Nor1 on -cell mass, investigated the expression patterns of Nr4as in human islets and INS cells and performed gain-and loss-offunction experiments to further characterize the role of Nor1 in -cell apoptosis. Surprisingly, Nor1 knockout mice displayed increased -cell mass, whereas mice with genetic deletion of Nur77 did not exhibit any significant differences compared with their WT littermates. The increase in -cell mass in Nor1 knockout mice was accompanied by improved glucose toler- ance. A gene expression study performed in both human islets and INS cells revealed that Nor1 expression is significantly increased by pro-inflammatory cytokines and, to a lesser extent, by elevated concentrations of glucose. Nor1 overexpression in both INS and human islet cells caused apoptosis, whereas siRNA-mediated Nor1 knockdown prevented cytokine-induced-cell death. Finally, Nor1 expression was up-regulated in islets of individuals with type 2 diabetes. Altogether, our results uncover that Nor1 negatively regulates -cell mass. Nor1 represents a promising molecular target in diabetes treatment to prevent -cell destruction.Type 2 diabetes is characterized by progressive deterioration of both -cell mass and function, resulting in a relative deficit in insulin secretion (1, 2). Autopsy studies have indeed reported significant reductions in -cell mass in patients with type 2
A high percentage of type 2 diabetes mellitus (T2D) patients are also affected by dyslipidemia and chronic periodontitis (CP), but no studies have determined the gene expression in patients that are simultaneously affected by all three diseases. We investigated the systemic expression of immune-related genes in T2D, dyslipidemia, and CP patients. One hundred and fifty patients were separated into five groups containing 30 individuals each: (G1) poorly controlled T2D with dyslipidemia and CP; (G2) well-controlled T2D with dyslipidemia and CP; (G3) normoglycemic individuals with dyslipidemia and CP; (G4) healthy individuals with CP; (G5) systemic and periodontally healthy individuals. Blood analyses of lipid and glycemic profiles were carried out. The expression of genes, including IL10, JAK1, STAT3, SOCS3, IP10, ICAM1, IFNA, IFNG, STAT1, and IRF1, was investigated by RT-qPCR. Patients with dyslipidemia demonstrated statistically higher expression of the IL10 and IFNA genes, while IFNG, IP10, IRF1, JAK1, and STAT3 were lower in comparison with nondyslipidemic patients. Anti-inflammatory genes, such as IL10, positively correlated with parameters of glucose, lipid, and periodontal profiles, while proinflammatory genes, such as IFNG, were negatively correlated with these parameters. We conclude that dyslipidemia appears to be the primary disease that is associated with gene expression of immune-related genes, while parameters of T2D and CP were correlated with the expression of these important immune genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.