In Aurelia aurita, applied iodine induces medusa formation (strobilation). This process also occurs when the temperature is lowered. This was found to increase oxidative stress resulting in an increased production of iodine from iodide. One polyp produces several medusae (initially termed ephyrae) starting at the polyp's oral end. The spreading of strobilation down the body column is controlled by a feedback loop: ephyra anlagen decrease the tyrosine content in adjacent polyp tissue by producing melanin from tyrosine. Endogenous tyrosine is able to remove iodine by forming iodiferous tyrosine compounds. The reduced level of tyrosine causes the ephyra-polypborder to move towards the basal end of the former polyp. We argue that an oxidant defence system may exist which makes use of iodide and tyrosine. Like other marine invertebrates, polyps of Aurelia contain iodide ions. Inevitably produced peroxides oxidise iodide into iodine. The danger to be harmed by iodine is strongly decreased by endogenous tyrosine which reacts with iodine to form iodiferous tyrosine compounds including thyroxin. Both substances together, iodide and tyrosine, form an efficient oxidant defence system which shields the tissue against damage by reactive oxygen species. In the course of evolution (from a species at the basis of the animal kingdom like Aurelia to a highly evolved species like man) the waste product thyroxin (indicating a high metabolic rate) has developed into a hormone which controls the metabolic rate.
Larvae of cnidarians need an external cue for metamorphosis to start. The larvae of various hydrozoa, in particular of Hydractinia echinata, respond to Cs + , Li + , NH 4 + and seawater in which the concentration of Mg 2+ ions is reduced. They further respond to the phorbolester, tetradecanoyl-phorbol-13-acetate (TPA) and the diacylglycerol (DAG) diC8, which both are argued to stimulate a protein kinase C. The only well-studied scyphozoa, Cassiopea spp., respond differently, i.e. to TPA and diC8 only. We found that larvae of the scyphozoa Aurelia aurita, Chrysaora hysoscella and Cyanea lamarckii respond to all the compounds mentioned. Trigonelline (N-methylnicotinic acid), a metamorphosis inhibitor found in Hydractinia larvae, is assumed to act by delivering a methyl group for transmethylation processes antagonising metamorphosis induction in Chrysaora hysoscella and Cyanea lamarckii. The three species tested are scyphozoa belonging to the subgroup of semaeostomeae, while Cassiopea spp. belong to the rhizostomeae. The results obtained may contribute to the discussion concerning the evolution of cnidarians and may help to clarify whether the way metamorphosis can be induced in rhizostomeae as a whole is different from that in hydrozoa and those scyphozoa belonging to the subgroup semaeostomeae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.