Summary Alzheimer’s disease (AD) is characterized by cerebral deposition of β-amyloid (Aβ) peptides, which are generated from amyloid precursor protein (APP) by β- and γ-secretases. APP and the secretases are membrane associated, but whether membrane trafficking controls Aβ levels is unclear. Here, we performed an RNAi screen of all human Rab-GTPases, which regulate membrane trafficking, complemented with a Rab-GTPase-activating protein screen, and present a road map of the membrane-trafficking events regulating Aβ production. We identify Rab11 and Rab3 as key players. Although retromers and retromer-associated proteins control APP recycling, we show that Rab11 controlled β-secretase endosomal recycling to the plasma membrane and thus affected Aβ production. Exome sequencing revealed a significant genetic association of Rab11A with late-onset AD, and network analysis identified Rab11A and Rab11B as components of the late-onset AD risk network, suggesting a causal link between Rab11 and AD. Our results reveal trafficking pathways that regulate Aβ levels and show how systems biology approaches can unravel the molecular complexity underlying AD.
Currently, there are several treatments for osteoporosis however; they all display some sort of limitation and/or side effects making the need for new treatments imperative. We have previously demonstrated that NMP is a bioactive drug which enhances bone regeneration in vivo and acts as an enhancer of bone morphogenetic protein (BMP) in vitro. NMP also inhibits osteoclast differentiation and attenuates bone resorption. In the present study, we tested NMP as a bromodomain inhibitor and for osteoporosis prevention on ovariectomized (OVX) induced rats while treated systemically with NMP. Female Sprague-Dawley rats were ovariectomized and weekly NMP treatment was administrated 1 week after surgery for 15 weeks. Bone parameters and related serum biomarkers were analyzed. 15 weeks of NMP treatment decreased ovariectomy-induced gained weight in average by 43% and improved bone mineral density (BMD) and bone volume over total volume (BV/TV) in rat femur on average by 25% and 41% respectively. Moreover, mineral apposition rate and bone biomarkers of bone turnover in the treatment group were at similar levels with those of the Sham group. Due to the function of NMP as a low affinity bromodomain inhibitor and its mechanism of action involving osteoblasts/osteoclasts balance and inhibitory effect on inflammatory cytokines, NMP is a promising therapeutic compound for the prevention of osteoporosis. In the present study, we tested NMP as a bromodomain inhibitor and for osteoporosis prevention on ovariectomized (OVX) induced rats while treated systemically with NMP. Female Sprague-Dawley rats were ovariectomized and weekly NMP treatment was administrated 1 week after surgery for 15 weeks. Bone parameters and related serum biomarkers were analyzed. 15 weeks of NMP treatment decreased ovariectomy-induced gained weight in average by 43% and improved bone mineral density (BMD) and bone volume over total volume (BV/TV) in rat femur in average by 25% and 41% respectively. Moreover, mineral apposition rate and bone biomarkers of bone turnover in the treatment group were at similar levels with those of the Sham group.Due to the function of NMP as a low affinity bromodomain inhibitor and its mechanism of action involving osteoblasts/osteoclasts balance and inhibitory effect on inflammatory cytokines, NMP is a promising therapeutic compound for the prevention of osteoporosis.
N,N-Dimethylacetamide (DMA) is a water-miscible solvent, FDA approved as excipient and therefore widely used as drug-delivery vehicle. As such, DMA should be devoid of any bioactivity. Here we report that DMA is epigenetically active since it binds bromodomains and inhibits osteoclastogenesis and inflammation. Moreover, DMA enhances bone regeneration in vivo. Therefore, our in vivo and in vitro data reveal DMA’s potential as an anti-osteoporotic agent via the inhibition of osteoclast mediated bone resorption and enhanced bone regeneration. Our results highlight the potential therapeutic benefits of DMA and the need for reconsideration of previous reports where DMA was used as an ‘inactive’ drug-delivery vehicle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.