When a single leaf on a young poplar tree is mechanically wounded, wound-induced (win) mRNAs are detected in the unwounded portion of that leaf and in specific leaves that are remote from the wounded leaf. Shortly after wounding (6-8 hr), the remote leaves in which win genes are expressed can be predicted by a knowledge of photoassimilate movement patterns in vivo. When assimilate movement from a wounded leafis blocked or the direction ofassimilate movement is altered by shading, win gene expression in remote leaves is similarly blocked or altered. These data illustrate how the long-distance transduction of wound-induced signals can be manipulated in plants by altering carbon allocation.
Root hydraulic conductance and total stomatal conductance on a per plant basis changed in parallel during growth of sugarcane. Changes in root system water and solute transport properties were evaluated to determine the role of changes in root xylem sap composition in this coordination of vapour and liquid phase conductances. Stomatal conductance of excised leaf strips supplied with root exudate declined with increasing leaf area of the exudate donor plants. Leaf strips from plants of different sizes responded similarly to exudate from each donor plant, indicating that there were no inherent differences in leaf stomatal properties. The effect of xylem sap from plants of increasing size paralleled the decline in stomatal conductance of intact plants of similarly increasing plant size. Delivery rates per unit leaf area of K+, Ca2+, abscisic acid, and zeatin riboside (ZR) in xylem sap declined with increasing plant size. Patterns of delivery of ZR and K+ were consistent with a role in the plant size-dependent regulation of stomatal conductance, although additional xylem constituents are likely to be involved. Developmental patterns of stomatal conductance in intact sugarcane plants may be linked to plant hydraulic properties by the composition and flux of xylem sap arriving at the stomatal complexes in leaves.
SUMMARYMechanistic hypotheses to explain mycorrhizal enhancement of root hydraulic conductivity (Lp) suggest that phosphorus (P) nutrition, plant growth substances and/or altered morphology may be responsible. Such ideas are based on work with VA (vesicular-arbuscular) mycorrhizas. Since VA mycorrhizas and ectomycorrhizas differ m many respects, they may alter host plant water uptake via different mechanisms. This paper examines Lj, in various ectomycorrhizal associations while considering factors which are important to the VA mycorrhizal effect on Lp. Douglas fir Pseudotsuga menziesii (Mirb.) Franco] seedlings inoculated with the ectomycorrhizal fungi Laccaria bicolor (Maire) Orton and Hebeloma crustuliniforme (Bull, ex St. Amans) Quel. and non-inoculated seedlings infected naturally with Thelephora were grown under three low levels of P fertilization (1, 10 and 100/^M P). Seedling morphology, tissue P levels, Lp and plant growth substance levels in xylem sap were measured after nine months growth. Increased tissue P and decreased root/shoot ratio correlated with increased L^, in each of the mycorrhizal treatments. When adjusted for the effect of these two factors, Lp of Laccaria and Hebeloma seedlmgs was still lower than the Thelephora seedlings. In a subsequent experiment, the Lp of seedlings with Hebeloma and Rhizopogon vinicolor Smith mycorrhizas was compared to the Lp of non-mycorrhizal seedlings (grown at 100 mM P) and no differences were found among treatments. The lack of an ectomycorrhizal effect on Lp is quite different from the enhancement of host Lp by VA mycorrhizas. Zeatin riboside concentrations of Thelephora-and Hebeloma-infected seedlings were similar, yet higher than with Laccarta. There was no relationship between plant growth substances and Lp in ectomycorrhizal Douglas fir, despite lower zeatin riboside concentrations for Laccar/a-inoculated plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.