Pneumococcus has been shown to bind to epithelial cells of the nasopharynx and lung, and to endothelial cells of the peripheral vasculature. To characterize bacterial elements required for attachment to these cell types, a library of genetically altered pneumococci with defects in exported proteins was screened for the loss of attachment to glycoconjugates representative of the nasopharyngeal cell receptor, type II lung cells (LC) and human endothelial cells (EC). A mutant was identified which showed a greater than 70% loss in the ability to attach to all cell types. This mutant also showed decreased adherence to the glycoconjugates containing the terminal sugar residues GalNAcbeta1-3Gal, GalNAcbeta1-4Gal and the carbohydrate GlcNAc, which are proposed components of the pneumococcal receptors specific to the surfaces of LC and EC. Analysis of the locus altered in this mutant revealed a gene, spxB, that encodes a member of the family of bacterial pyruvate oxidases which decarboxylates pyruvate to acetyl phosphate plus H2O2 and CO2. This mutant produced decreased concentrations of H2O2 and failed to grow aerobically in a chemically defined medium, unless supplemented with acetate which presumably restores acetyl phosphate levels by the action of acetate kinase, further suggesting that spxB encodes a pyruvate oxidase. The addition of acetate to the growth medium restored the adherence properties of the mutant indicating a link between the enzyme and the expression of bacterial adhesins. A defect in spxB corresponded to impaired virulence of the mutant in vivo. Compared to the parent strain, an spxB mutant showed reduced virulence in animal models for nasopharyngeal colonization, pneumonia, and sepsis. We propose that a mutation in spxB leads to down-regulation of the multiple adhesive properties of pneumococcus which, in turn, may correlate to diminished virulence in vivo.
Human streptococci that belong to Streptococcus dysgalactiae subspecies equisimilis (SDSE) have long been known under the name of beta-hemolytic groups C and G streptococci. Extensive taxonomic studies during the past years have distinguished most of the veterinary pathogens belonging to Lancefield groups C and G from those of human origin. After being considered nonpathogenic for many years, SDSE is now recognized as an important bacterial pathogen. The clinical spectrum of diseases caused by this species closely resembles Streptococcus pyogenes infections, including the occurrence of poststreptococcal sequelae. In accordance with these observations, many of the virulence factors present in S. pyogenes can also be found in SDSE strains. High nucleotide-sequence identities in virulence genes and the association of these genes with mobile genetic elements support the hypothesis of extensive horizontal gene-transfer events among streptococcal species of the pyogenic group. Recent epidemiological studies have shown increasing numbers of invasive SDSE infections, often among immunocompromised patients, and suggest that this species will probably gain even more clinical importance in the near future. For a better understanding of the changing epidemiology and pathogenicity of SDSE, an increased awareness of these microorganisms as human pathogens and proper identification are mandatory.
Streptococcus agalactiae or group B streptococcus (GBS) is a leading cause of serious neonatal infections. GBS is an opportunistic commensal constituting a part of the intestinal and vaginal physiologic flora and maternal colonization is the principal route of GBS transmission. GBS is a pathobiont that converts from the asymptomatic mucosal carriage state to a major bacterial pathogen causing severe invasive infections. At present, as many as 10 serotypes (Ia, Ib, and II–IX) are recognized. The aim of the current review is to shed new light on the latest epidemiological data and clonal distribution of GBS in addition to discussing the most important colonization determinants at a molecular level. The distribution and predominance of certain serotypes is susceptible to variations and can change over time. With the availability of multilocus sequence typing scheme (MLST) data, it became clear that GBS strains of certain clonal complexes possess a higher potential to cause invasive disease, while other harbor mainly colonizing strains. Colonization and persistence in different host niches is dependent on the adherence capacity of GBS to host cells and tissues. Bacterial biofilms represent well-known virulence factors with a vital role in persistence and chronic infections. In addition, GBS colonization, persistence, translocation, and invasion of host barriers are largely dependent on their adherence abilities to host cells and extracellular matrix proteins (ECM). Major adhesins mediating GBS interaction with host cells include the fibrinogen-binding proteins (Fbs), the laminin-binding protein (Lmb), the group B streptococcal C5a peptidase (ScpB), the streptococcal fibronectin binding protein A (SfbA), the GBS immunogenic bacterial adhesin (BibA), and the hypervirulent adhesin (HvgA). These adhesins facilitate persistent and intimate contacts between the bacterial cell and the host, while global virulence regulators play a major role in the transition to invasive infections. This review combines for first time epidemiological data with data on adherence and colonization for GBS. Investigating the epidemiology along with understanding the determinants of mucosal colonization and the development of invasive disease at a molecular level is therefore important for the development of strategies to prevent invasive GBS disease worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.