There is no definite information available on the structural characteristics of IgE binding epitopes on allergenic molecules, although it is widely accepted that most of them are conformational. In the current study we aimed to characterize the IgE epitope of Bet v 1, the major birch pollen allergen, by the application of phage display peptide libraries. We purified IgE specific for Bet v 1 from allergic patients' sera to select mimotopes representing artificial IgE epitopes by biopanning of phage libraries. By linear alignment, it was not possible to attribute mimotope sequences to the primary structure of Bet v 1. We developed a computer-aided, 3-dimensional coarse-grained epitope search. The 3-dimensional search, followed by statistical analysis, revealed an exposed area on the Bet v 1 molecule (located between residues 9-22 and 104-123) as the IgE binding structure. The IgE epitope was located at a 30 A distance from a previously described IgG epitope and the respective mimotope, designated Bet mim E. Such mimotopes could potentially be used for the induction of IgG capable of interfering with the IgE/allergen interaction. To test this hypothesis, we immunized BALB/c mice with the phage-displayed Bet mim E. Immunizations resulted in the induction of Bet v 1-specific IgG, which was able to block the IgE binding to Bet v 1 in vitro. Based on these observations, we propose that immunotherapy with IgE mimotopes generated by biopannings result in formation of blocking IgG. We conclude that mimotope immunotherapy may represent a new and promising concept for treatment of type I allergic disease.
By screening phage display random peptide libraries with purified immunoglobulin E (IgE) from birch pollen-allergic patients, we previously defined peptides mimicking natural IgE epitopes (mimotopes) of the major birch pollen allergen Bet v 1. The present study aimed to define a monovalent carrier for the IgE mimotopes to induce protective antibodies directed to the IgE epitopes, suitable for mimotope-specific therapy. We expressed the selected mimotopes as fusion proteins together with streptococcal albumin binding protein (ABP). The fusion proteins were recognized specifically by anti-Bet v 1 human IgE, which demonstrated that the mimotopes fused to ABP resemble the natural IgE epitope. Bet v 1-specific IgG was induced by immunization of BALB/c mice with fusion proteins. These IgG antibodies could inhibit IgE binding to Bet v 1. Skin testing of Bet v 1 allergic mice showed that the ABP mimotope constructs did not elicit type I skin reactions, although they possess IgE binding structures. Our data suggest that IgE mimotopes are safe for epitope-specific immunotherapy of sensitized individuals, when presented in a monovalent form. Therefore, ABP-fused mimotopes are promising candidates for a new type of immunotherapy based on the precise induction of blocking antibodies.
Size and posttranslational modifications are obstacles in the recombinant expression of high-molecular-weight melanoma-associated antigen (HMW-MAA). Creating a tumor antigen mimic via the phage display technology may be a means to overcome this problem for vaccine design. In this study, we aimed to generate an immunogenic epitope mimic of HMW-MAA. Therefore we screened a linear 9mer phage display peptide library, using the anti-HMW-MAA monoclonal antibody (mAb) 225.28S. This antibody mediates antibody-dependent cellular cytotoxicity (ADCC) and has already been used for anti-idiotype therapy trials. Fifteen peptides were selected by mAb 225.28S in the biopanning procedure. They share a consensus sequence, but show only partial homology to the amino acid sequence of the HMW-MAA core protein, indicating mimicry with a conformational epitope. One mimotope was chosen to be fused to albumin binding protein (ABP) as an immunogenic carrier. Immunoassays with 225.28S indicated that the mimotope fusion protein was folded correctly. Subsequently, the fusion protein was tested for immunogenicity in BALB/c mice. The induced anti-mimotope antibodies recognized HMW-MAA of 518A2 human melanoma cells, whereas sera of mice immunized with the carrier ABP alone showed no reactivity. These anti-mimotope antibodies were capable of inducing specific lysis of 518A2 melanoma cells in ADCC assays with murine effector cells. In conclusion, the presented data indicate that mimotopes fused to an immunogenic carrier are suitable tools to elicit epitope-specific anti-melanoma immune responses.
Background: The induction of nonanaphylactogenic ‘blocking’ IgG antibodies capable of inhibiting the IgE/allergen interaction represents a favorable therapeutic concept for type I allergy. However, IgG antibodies to allergens may block or enhance specific IgE binding, depending on the recognized epitope. Taking the major birch pollen allergen Bet v 1 as a model, we developed a strategy for the precise induction of IgG antibodies of a desired epitope specificity. Methods: Random phage display peptide libraries were applied to define peptide structures mimicking natural epitopes (mimotopes) of Bet v 1. Selections were performed with BIP 1, a murine monoclonal antibody known to enhance the IgE binding to Bet v 1, and with anti-Bet v 1 IgE purified from patients’ sera. The characterized Bet v 1 mimotopes were used to localize the corresponding epitope at the surface of Bet v 1 by a computer-aided mathematical approach based on the three-dimensional structure and the chemical character of the amino acids. The Bet v 1 mimotopes were further used to immunize BALB/c mice. The specificity of the induced antibodies was tested by immunoblotting and inhibition assays. Results: With the three-dimensional epitope search it became possible to localize a discontinuous IgE epitope on the surface of Bet v 1 in a substantial distance from the IgG epitope of the monoclonal antibody BIP 1. Moreover, we could demonstrate that phage displaying mimotopes are immunogenic vectors for the precise induction of epitope-specific IgG. Immunization with BIP 1 mimotopes induced IgG enhancing the IgE binding to Bet v 1, whereas immunization with IgE mimotopes resulted in IgG capable of blocking human IgE binding in vitro. Conclusion: Allergen mimotopes can be used for the induction of anti allergen IgG of desired specificity. We propose that mimotope immunotherapy based on IgE mimotopes generated by biopannings may represent a future concept for therapy of type I allergy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.