This paper presents the results of a rheological test of a commercial magnetorheological (MR) fluid (MRF-132DG). The research includes the problem of measuring and interpreting limit stresses under conditions close to the magnetic saturation of the fluid. Four different limit stresses were determined, two related to the yield point and two related to the flow point. Methods for determining limit stresses, especially due to excitation conditions, were also analysed. The aim of this study is to determine the effect of selected parameters on the values of limit stresses of the selected MR fluid. An additional objective is to highlight the problems of defining and interpreting individual limit stresses in MR fluids, particularly in the context of selecting the values of these stresses for the purpose of modeling systems with MR fluids.
Magnetorheological (MR) fluids are classified as smart materials. They are non-homogeneous substances of complex composition and are characterised by complex rheological properties. In addition, the characteristics of their behaviour can be actively affected by the magnetic field, both in terms of its value and spatial orientation. This paper presents the results of shear stress measurements of a commercial magnetorheological fluid using a plate-plate type geometry with a modified working surface. The purpose of the study was to determine the effect of changing the roughness of the measuring plate on the obtained shear stress results. Controlled shear rate tests and Magneto Sweep measurements were carried out for three MR fluid layer heights. The tests were carried out at magnetic field induction in the range of 0 to 680 mT. The study showed that the measurement system's geometric parameters significantly affect the MR fluid's behaviour under test. It was shown that increasing the surface roughness can increase or decrease the measured value of shear stress depending on the test parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.