In plants, the only known outer-chain elongation of complex N-glycans is the formation of Lewis a [Fuca1-4(Galb1-3) GlcNAc-R] structures. This process involves the sequential attachment of b1,3-galactose and a1,4-fucose residues by b1,3-galactosyltransferase and a1,4-fucosyltransferase. However, the exact mechanism underlying the formation of Lewis a epitopes in plants is poorly understood, largely because one of the involved enzymes, b1,3-galactosyltransferase, has not yet been identified and characterized. Here, we report the identification of an Arabidopsis thaliana b1,3-galactosyltransferase involved in the biosynthesis of the Lewis a epitope using an expression cloning strategy. Overexpression of various candidates led to the identification of a single gene (named GALACTOSYLTRANSFERASE1 [GALT1]) that increased the originally very low Lewis a epitope levels in planta. Recombinant GALT1 protein produced in insect cells was capable of transferring b1,3-linked galactose residues to various N-glycan acceptor substrates, and subsequent treatment of the reaction products with a1,4-fucosyltransferase resulted in the generation of Lewis a structures. Furthermore, transgenic Arabidopsis plants lacking a functional GALT1 mRNA did not show any detectable amounts of Lewis a epitopes on endogenous glycoproteins. Taken together, our results demonstrate that GALT1 is both sufficient and essential for the addition of b1,3-linked galactose residues to N-glycans and thus is required for the biosynthesis of Lewis a structures in Arabidopsis. Moreover, cell biological characterization of a transiently expressed GALT1-fluorescent protein fusion using confocal laser scanning microscopy revealed the exclusive location of GALT1 within the Golgi apparatus, which is in good agreement with the proposed physiological action of the enzyme.
Plant glycoproteins contain substantial amounts of paucimannosidic N-glycans lacking terminal GlcNAc residues at their nonreducing ends. It has been proposed that this is due to the action of b-hexosaminidases during late stages of N-glycan processing or in the course of N-glycan turnover. We have now cloned the three putative b-hexosaminidase sequences present in the Arabidopsis (Arabidopsis thaliana) genome. When heterologously expressed as soluble forms in Spodoptera frugiperda cells, the enzymes (termed HEXO1-3) could all hydrolyze the synthetic substrates p-nitrophenyl-2-acetamido-2-deoxy-b-Dglucopyranoside, p-nitrophenyl-2-acetamido-2-deoxy-b-D-galactopyranoside, 4-methylumbelliferyl-2-acetamido-2-deoxy-b-Dglucopyranoside, and 4-methylumbelliferyl-6-sulfo-2-acetamido-2-deoxy-b-D-glucopyranoside, albeit to a varying extent. HEXO1 to HEXO3 were further able to degrade pyridylaminated chitotriose, whereas pyridylaminated chitobiose was only cleaved by HEXO1. With N-glycan substrates, HEXO1 displayed a much higher specific activity than HEXO2 and HEXO3. Nevertheless, all three enzymes were capable of removing terminal GlcNAc residues from the a1,3-and a1,6-mannosyl branches of biantennary N-glycans without any strict branch preference. Subcellular localization studies with HEXOfluorescent protein fusions transiently expressed in Nicotiana benthamiana plants showed that HEXO1 is a vacuolar protein. In contrast, HEXO2 and HEXO3 are mainly located at the plasma membrane. These results indicate that HEXO1 participates in N-glycan trimming in the vacuole, whereas HEXO2 and/or HEXO3 could be responsible for the processing of N-glycans present on secretory glycoproteins.
GnTI (N-acetylglucosaminyltransferase I) is a Golgi-resident enzyme essential for the processing of high-mannose to hybrid and complex N-glycans. The Arabidopsis thaliana cgl mutant lacks GnTI activity and as a consequence accumulates oligomannosidic structures. Molecular cloning of cgl GnTI cDNA revealed a point mutation, which causes a critical amino acid substitution (Asp144-->Asn), thereby creating an additional N-glycosylation site. Heterologous expression of cgl GnTI in insect cells confirmed its lack of activity and the use of the N-glycosylation site. Remarkably, introduction of the Asp144-->Asn mutation into rabbit GnTI, which does not result in the formation of a new N-glycosylation site, led to a protein with strongly reduced, but still detectable enzymic activity. Expression of Asn144 rabbit GnTI in cgl plants could partially restore complex N-glycan formation. These results indicate that the complete deficiency of GnTI activity in cgl plants is mainly due to the additional N-glycan, which appears to interfere with the proper folding of the enzyme.
XylT (beta1,2-xylosyltransferase) is a unique Golgi-bound glycosyltransferase that is involved in the biosynthesis of glycoprotein-bound N-glycans in plants. To delineate the catalytic domain of XylT, a series of N-terminal deletion mutants was heterologously expressed in insect cells. Whereas the first 54 residues could be deleted without affecting the catalytic activity of the enzyme, removal of an additional five amino acids led to the formation of an inactive protein. Characterization of the N-glycosylation status of recombinant XylT revealed that all three potential N-glycosylation sites of the protein are occupied by N-linked oligosaccharides. However, an unglycosylated version of the enzyme displayed substantial catalytic activity, demonstrating that N-glycosylation is not essential for proper folding of XylT. In contrast with most other glycosyltransferases, XylT is enzymatically active in the absence of added metal ions. This feature is not due to any metal ion directly associated with the enzyme. The precise acceptor substrate specificity of XylT was assessed with several physiologically relevant compounds and the xylosylated reaction products were subsequently tested as substrates of other Golgi-resident glycosyltransferases. These experiments revealed that the substrate specificity of XylT permits the enzyme to act at multiple stages of the plant N-glycosylation pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.