Using a human glial fibrillary acidic protein (hGFAP) promoter-driven cre transgene, we have achieved efficient inactivation of a floxed connexin43 (Cx43) gene in astrocytes of adult mice. The loss of Cx43 expression was monitored in a cell-autonomous manner via conditional replacement of the Cx43-coding region by a lacZ reporter gene. In this way, we bypassed the early postnatal lethality previously reported for Cx43 null mice and characterized the phenotypic consequences of Cx43 deficiency in the CNS. Mice lacking Cx43 in astrocytes were viable and showed no evidence of either neurodegeneration or astrogliosis. Spreading depression (SD) is a pathophysiological phenomenon observed in the CNS that is characterized by a propagating wave of depolarization followed by neuronal inactivation. Inhibitors of gap junctional communication have previously been shown to block initiation and propagation of SD. In contrast, we observed an increase in the velocity of hippocampal SD in the stratum radiatum of mice lacking Cx43 in astrocytes. In the same brain subregion, dye-coupling experiments revealed a reduction in overall astrocytic intercellular communication by approximately 50%. This strongly suggests separate and different neuronal and glial contributions of gap junctional intercellular communication to SD. Concomitant with increased velocity of spreading depression, we observed enhanced locomotory activity in mice lacking Cx43 in astrocytes.
In the mammalian retina, rods feed into the cone pathway through electrotonic coupling, and recent histological data suggest the involvement of connexin36 (Cx36) in this pathway. We therefore generated Cx36 null mice and monitored the functional consequences of this deficiency on early visual transmission. The homozygous mutant mice had a normally developed retina and showed no changes in the cellular organization of the rod pathway. In contrast, the functional coupling between AII amacrine cells and bipolar cells was impaired. Recordings of electroretinograms revealed a significant decrease of the scotopic b-wave in mutant animals and an increased cone threshold that is compatible with a distorted, gap junctional transmission between AII amacrine cells and cone bipolar cells. Recordings of visual evoked potentials showed extended latency in mutant mice but unaffected ON and OFF components. Our results demonstrate that Cx36-containing gap junctions are essential for normal synaptic transmission within the rod pathway.
A new gap junction gene isolated from rat brain cDNA, mouse retina cDNA and mouse genomic DNA is called connexin36, since it codes for a connexin protein of 321 amino acids corresponding to the theoretical molecular mass of 36 045 kDa (rat) and 36 084 kDa (mouse). Only one amino acid residue differs between rat and mouse connexin36. In the single murine connexin36 gene, an 1.14-kb intron interrupts the coding region, similar as in the homologous skate connexin35 gene. Because of this unique feature, mouse connexin36 differs from the other 13 murine connexin genes and is suggested to form a new N N subclass of connexins. Connexin36 mRNA (2.9 kb) is highly expressed in adult retina and less abundant in brain where it gradually increased during fetal development until day 7 post partum, and decreased thereafter.z 1998 Federation of European Biochemical Societies.
We have studied the expression pattern of neuronal connexin36 (Cx36) in the mouse and rat retina. In vertical sections of both retinas, a polyclonal antibody directed against Cx36 produced punctate labeling in the inner plexiform layer (IPL). Intense immunoreactivity was localized to the entire OFF sublamina of the IPL, and much weaker staining could be observed in the ON sublamina. Double-labeling experiments in the rat retina with antibodies directed against parvalbumin indicate that Cx36 is expressed on dendrites of AII amacrine cells. Cx36-like immunoreactivity in sublamina a of the IPL did not overlap with lobular appendages or cell bodies of AII amacrine cells. In a mouse retinal slice preparation, AII amacrine and ON cone bipolar cells were intracellularly injected with Neurobiotin and counterstained with antibody against Cx36. Punctate labeling appeared to be in register with dendritic arborization of AII amacrines and cone bipolar cells in the ON sublamina of the IPL. Whereas AII amacrine cells isolated from the rat retina clearly displayed Cx36-like immunoreactivity, isolated ON cone bipolar cells were negative for Cx36. Axon terminals of rod bipolar cells were decorated with Cx36-positive contacts but did not express Cx36 themselves.These results indicate that Cx36 is expressed by AII amacrine cells in homologous and heterologous gap junctions made with AII amacrines and cone bipolar cells, respectively. The heterologous gap junctions appear to be heterotypic, because ON cone bipolar cells do not express Cx36.
The gap junction protein connexin30 (Cx30) is expressed in a variety of tissues that include epithelial and mesenchymal structures of the inner ear. We generated Cx30 (Gjb6) deficient mice by deletion of the Cx30 coding region. Homozygous mutants (Cx30((-/-))) were born at the expected Mendelian frequency, developed normally and were fertile. However, they exhibit a severe constitutive hearing impairment. From the age of hearing onset, these mice lack the electrical potential difference between the endolymphatic and perilymphatic compartments of the cochlea, i.e. the endocochlear potential, which plays a key role in the high sensitivity of the mammalian auditory organ. In addition, after postnatal day 18, the cochlear sensory epithelium starts to degenerate by cell apoptosis. This degeneration process is likely to account for the concomitant decrease of the endolymphatic potassium concentration and the aggravation of the hearing loss in adult Cx30((-/-)) mice. The Cx30 ((-/-)) phenotype thus reveals the critical role of Cx30 both in generating the endocochlear potential and for survival of the auditory hair cells after the onset of hearing. The Cx30 deficient mice may represent a valuable model to study the mechanism of the hearing loss in human patients carrying a homozygous deletion of the CX30 gene (del Castillo et al., 2002, New Engl. J. Med., 346, 243-249).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.