Expulsive maneuvers (EMs) caused by simultaneous contraction of diaphragm and abdominal muscles shift substantial quantities of blood from the splanchnic circulation to the extremities. This suggests that the diaphragm assisted by abdominal muscles might accomplish ventilation and circulation simultaneously by repeated EMs. We tested this hypothesis in normal subjects by measuring changes (Δ) in body volume (Vb) by whole body plethysmography simultaneously with changes in trunk volume (Vtr) by optoelectronic plethysmography, which measures the same parameters as whole body plethysmography plus the volume of blood shifts (Vbs) between trunk and extremities: Vbs = ΔVtr-ΔVb. We also measured abdominal pressure, pleural pressure, the arterial pressure wave, and cardiac output (Qc). EMs with abdominal pressure ~100 cmH(2)O for 1 s, followed by 2-s relaxations, repeated over 90 s, produced a "stroke volume" from the splanchnic bed of 0.35 ± 0.07 (SD) liter, an output of 6.84 ± 0.75 l/min compared with a resting Qc of 5.59 ± 1.14 l/min. Refilling during relaxation was complete, and the splanchnic bed did not progressively empty. Diastolic pressure increased by 25 mmHg during each EM. Between EMs, Qc increased to 7.09 ± 1.14 l/min due to increased stroke volume and heart rate. The circulatory function of the diaphragm assisted by simultaneous contractions of abdominal muscles with appropriate pressure and duration at 20 min(-1) can produce a circulatory output as great as resting Qc, as well as ventilation. These combined functions of the diaphragm have potential for cardiopulmonary resuscitation. The abdominal circulatory pump can act as an auxiliary heart.
Background: Hypoxia-induced pulmonary vasoconstriction increases pulmonary arterial pressure (PAP) and may impede right heart function and exercise performance. This study examined the effects of oral nitrate supplementation on right heart function and performance during exercise in normoxia and hypoxia. We tested the hypothesis that nitrate supplementation would attenuate the increase in PAP at rest and during exercise in hypoxia, thereby improving exercise performance.Methods: Twelve trained male cyclists [age: 31 ± 7 year (mean ± SD)] performed 15 km time-trial cycling (TT) and steady-state submaximal cycling (50, 100, and 150 W) in normoxia and hypoxia (11% inspired O2) following 3-day oral supplementation with either placebo or sodium nitrate (0.1 mmol/kg/day). We measured TT time-to-completion, muscle tissue oxygenation during TT and systolic right ventricle to right atrium pressure gradient (RV-RA gradient: index of PAP) during steady state cycling.Results: During steady state exercise, hypoxia elevated RV-RA gradient (p > 0.05), while oral nitrate supplementation did not alter RV-RA gradient (p > 0.05). During 15 km TT, hypoxia lowered muscle tissue oxygenation (p < 0.05). Nitrate supplementation further decreased muscle tissue oxygenation during 15 km TT in hypoxia (p < 0.05). Hypoxia impaired time-to-completion during TT (p < 0.05), while no improvements were observed with nitrate supplementation in normoxia or hypoxia (p > 0.05).Conclusion: Our findings indicate that oral nitrate supplementation does not attenuate acute hypoxic pulmonary vasoconstriction nor improve performance during time trial cycling in normoxia and hypoxia.
Apart from its role as a flow generator for ventilation the diaphragm has a circulatory role. The cyclical abdominal pressure variations from its contractions cause swings in venous return from the splanchnic venous circulation. During exercise the action of the abdominal muscles may enhance this circulatory function of the diaphragm. Eleven healthy subjects (25 ± 7 year, 70 ± 11 kg, 1.78 ± 0.1 m, 3 F) performed plantar flexion exercise at ~4 METs. Changes in body volume (ΔVb) and trunk volume (ΔVtr) were measured simultaneously by double body plethysmography. Volume of blood shifts between trunk and extremities (Vbs) was determined non-invasively as ΔVtr-ΔVb. Three types of breathing were studied: spontaneous (SE), rib cage (RCE, voluntary emphasized inspiratory rib cage breathing), and abdominal (ABE, voluntary active abdominal expiration breathing). During SE and RCE blood was displaced from the extremities into the trunk (on average 0.16 ± 0.33 L and 0.48 ± 0.55 L, p < 0.05 SE vs. RCE), while during ABE it was displaced from the trunk to the extremities (0.22 ± 0.20 L p < 0.001, p < 0.05 RCE and SE vs. ABE respectively). At baseline, Vbs swings (maximum to minimum amplitude) were bimodal and averaged 0.13 ± 0.08 L. During exercise, Vbs swings consistently increased (0.42 ± 0.34 L, 0.40 ± 0.26 L, 0.46 ± 0.21 L, for SE, RCE and ABE respectively, all p < 0.01 vs. baseline). It follows that during leg exercise significant bi-directional blood shifting occurs between the trunk and the extremities. The dynamics and partitioning of these blood shifts strongly depend on the relative predominance of the action of the diaphragm, the rib cage and the abdominal muscles. Depending on the partitioning between respiratory muscles for the act of breathing, the distribution of blood between trunk and extremities can vary by up to 1 L. We conclude that during exercise the abdominal muscles and the diaphragm might play a role of an “auxiliary heart.”
It has been suggested that internal mechanical work (i.e., the work required to move the limbs with respect to the center of mass, Wint) may be responsible for the higher net cost of walking in obese adults, but this variable has not yet been studied in individuals with obesity. The main finding of the present study is that individuals with class III obesity exhibit a similar amount of mass-normalized Wint to that of adults with a normal body weight, suggesting that body mass-relative Wint is not affected by obesity and is not responsible for the higher energy cost and the lower efficiency of walking in this population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.