Ecological conditions shape natural distribution of plants. Populations are denser in optimal habitats but become more fragmented in the areas of suboptimal environmental conditions. Usually, fragmentation increases towards the limits of species distribution. Fragmented populations are often characterised by decreased genetic variation, and this effect is frequent in peripheral populations, mostly due to the reduced effective population size. Interestingly, the genetic consequences of fragmentation seem to be relatively weak in forest trees. Using microsatellite markers, we assessed the impact of population fragmentation on the genetic structure of a European tree species Acer campestre. Within the study area, this medium-size wind-dispersed and insect-pollinated tree reveals a gradual decrease in population density towards the northern range limit. Over the distance of 150 km, we detected the significant decrease in allelic richness, heterozygosity as well as an increase in the rate of population divergence along with latitude. On the other hand, we failed to show that the observed patterns of genetic structure result from the variation in population densities. Moreover, inbreeding levels revealed no association with both density and geographic location, suggesting that pollen limitation does not occur, even at the range margin. As we showed that there is no difference in a dispersal scale between low-and highdensity populations in the study species, we argue that the genetic structure is a result of postglacial recolonization. However, unlike many other forest trees, A. campestre showed the sharp latitudinal genetic pattern at a very restricted spatial scale. Limited dispersal and high fragmentation are likely the reasons.
BackgroundPublished sources document a loss of biodiversity at an extreme rate, mainly because natural and semi-natural ecosystems are becoming fragmented and isolated, thus losing their biological functions. These changes significantly influence biological diversity, which is a complex phenomenon that changes over time. Contemporary ecologists must therefore draw attention to anthropogenic replacement habitats and increase their conservation status. In our studies we show the positive role of soda ash dumping grounds as an alternative habitat for digger wasps, especially the thermophilic species.Methodology/Principal findingsIn the years 2007–2010 we carried out investigations in postindustrial soda ash dumping grounds located in Central Poland. We demonstrated that these areas serve as replacement habitats for thermophilic species of Spheciformes and, indirectly, for their potential prey. The studies were conducted in three microhabitat types, varying in soil moisture, salinity and alkalinity, that were changing in the course of ecological succession. We trapped 2571 specimens belonging to 64 species of digger wasps. Species typical of open sunny spaces comprised 73% of the whole inventory. The obtained results suggest that the stage of succession determines the richness, abundance and diversity of Spheciformes. The most favorable conditions for digger wasps were observed in habitats at late successional stages.Conclusions/SignificanceOur results clearly showed that these habitats were replacement habitats for thermophilous Spheciformes, including rare taxa that require genetic, species and ecosystem protection, according to the Biodiversity Convention. We showed that some types of industry might play a positive role in the preservation of taxa in the landscape, and that even degraded industrial wasteland can replace habitats under anthropopressure, serving as refugia of biological diversity, especially for disturbance-dependent species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.