The majority of organisms can be grouped into those relying solely on photosynthesis (phototrophy) or those relying solely on the assimilation of organic substances (heterotrophy) to meet their requirements for energy and carbon. However, a special life history trait exists in which organisms combine both phototrophy and heterotrophy. Such ''mixotrophy'' is a widespread phenomenon in aquatic habitats and is observed in many protozoan and metazoan organisms. The strategy requires investment in both photosynthetic and heterotrophic cellular apparatus, and the benefits must outweigh these costs. In accordance with mechanistic resource competition theory, laboratory experiments revealed that pigmented mixotrophs combined light, mineral nutrients, and prey as substitutable resources. Thereby, they reduced prey abundance below the critical food concentration of competing specialist grazers [Rothhaupt, K. O. (1996) Ecology 77, 716 -724]. Here, we demonstrate the important consequences of this strategy for an aquatic community. In the illuminated surface strata of a lake, mixotrophs reduced prey abundance steeply. The data suggest that, as a consequence, grazers from higher trophic levels, consuming both the mixotrophs and their prey, could not persist. Thus, the mixotrophs escaped from competition with and losses to higher grazers. Furthermore, the mixotrophs structured prey abundance along the vertical light gradient, creating low densities near the surface and a pronounced maximum of their algal prey at depth. Such deep algal accumulations are typical features of nutrient-poor aquatic habitats, previously explained by resource availability. We hypothesize instead that the mixotrophic grazing strategy is responsible for deep algal accumulations in many aquatic environments.
To understand mechanisms of tufa biofilm calcification, selected karstwater stream stromatolites in Germany have been investigated with regard to their hydrochemistry, biofilm community, exopolymers, physicochemical microgradients, calcification pattern and lamination. In stream waters, CO2 degassing drives the increase in calcite saturation to maximum values of approximately 10-fold, independent from the initial Ca2+/alkalinity ratio. For the cyanobacteria of tufa biofilms, a culture-independent molecular approach showed that microscopy of resin-embedded biofilm thin sections underestimated the actual diversity of cyanobacteria, i.e. the six cyanobacteria morphotypes were opposed to nine different lineages of the 16S rDNA phylogeny. The same morphotype may even represent two genetically distant cyanobacteria and the closest relatives of tufa biofilm cyanobacteria may be from quite different habitats. Diatom diversity was even higher in the biofilm at the studied exemplar site than that of the cyanobacteria, i.e. 13 diatom species opposed to 9 cyanobacterial lineages. The non-phototrophic prokaryotic biofilm community is clearly different from the soil-derived community of the stream waters, and largely composed of flavobacteria, firmicutes, proteobacteria and actinobacteria. The exopolymeric biofilm matrix can be divided into three structural domains by fluorescence lectin-binding analysis. Seasonal and spatial variability of these structural EPS domains is low in the investigated streams. As indicated by microsensor data, biofilm photosynthesis is the driving mechanism in tufa stromatolite formation. However, photosynthesis-induced biofilm calcification accounts for only 10–20% of the total Ca2+ loss in the streams, and occurs in parallel to inorganic precipitation driven by CO2-degassing within the water column and on biofilm-free surfaces. Annual stromatolite laminae reflect seasonal changes in temperature and light supply. The stable carbon isotope composition of the laminae is not affected by photosynthesis-induced microgradients, but mirrors that of the bulk water body only reflecting climate fluctuations. Tufa stromatolites with their cyanobacterial–photosynthesis-related calcification fabrics form an analogue to porostromate cyanobacterial stromatolites in fossil settings high in CaCO3 mineral supersaturation but comparatively low in dissolved inorganic carbon. Here, the sum-effect of heterotrophic exopolymer-degradation and secondary Ca2+-release rather decreases calcite saturation, contrary to settings high in dissolved inorganic carbon such as soda lakes.
Freshwater tufa deposits are the result of calcification associated with biofilms dominated by cyanobacteria. Recent investigations highlighted the fact that the formation of microbial calcium carbonates is mainly dependent on the saturation index, which is determined by pH, the ion activity of Ca 2؉ and CO 3 2؊ , and the occurrence of extracellular polymeric substances (EPS) produced by microorganisms. EPS, which contain carboxyl and/or hydroxyl groups, can strongly bind cations. This may result in inhibition of CaCO 3 precipitation. In contrast, the formation of templates for crystal nucleation was reported by many previous investigations. The purposes of this study were (i) to characterize the in situ distribution of EPS glycoconjugates in tufa-associated biofilms of two German hard-water creeks by employing fluorescence lectin-binding analysis (FLBA), (ii) to verify the specific lectin-binding pattern by competitive-inhibition assays, and (iii) to assess whether carbonates are associated with structural EPS domains. Three major in situ EPS domains (cyanobacterial, network-like, and cloud-like structures) were detected by FLBA in combination with laser scanning microscopy (LSM). Based on lectin specificity, the EPS glycoconjugates produced by cyanobacteria contained mainly fucose, amino sugars (N-acetyl-glucosamine and N-acetyl-galactosamine), and sialic acid. Tufa deposits were irregularly covered by network-like EPS structures, which may originate from cyanobacterial EPS secretions. Cloud-like EPS glycoconjugates were dominated by sialic acid, amino sugars, and galactose. In some cases calcium carbonate crystals were associated with cyanobacterial EPS glycoconjugates. The detection of amino sugars and calcium carbonate in close association with decaying sheath material indicated that microbially mediated processes might be important for calcium carbonate precipitation in freshwater tufa systems.
Phototrophic biofilms were cultivated simultaneously using the same inoculum in three identical flow-lane microcosms located in different laboratories. The growth rates of the biofilms were similar in the different microcosms, but denaturing gradient gel electrophoresis (DGGE) analysis of both 16S and 18S rRNA gene fragments showed that the communities developed differently in terms of species richness and community composition. One microcosm was dominated by Microcoleus and Phormidium species, the second microcosm was dominated by Synechocystis and Phormidium species, and the third microcosm was dominated by Microcoleus- and Planktothrix- affiliated species. No clear effect of light intensity on the cyanobacterial community composition was observed. In addition, DGGE profiles obtained from the cultivated biofilms showed a low resemblance with the profiles derived from the inoculum. These findings demonstrate that validation of reproducibility is essential for the use of microcosm systems in microbial ecology studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.