The effects of salicylic acid (SA) and salinity on the activity of apoplastic antioxidant enzymes were studied in the leaves of two wheat (Triticum aestivam L.) cultivars: salt-tolerant (Gerek-79) and salt-sensitive (Bezostaya). The leaves of 10-d-old seedlings grown at nutrient solution with 0 (control), 250 or 500 mM NaCl were sprayed with 0.01 or 0.1 mM SA. Then, the activities of catalase (CAT), peroxidase (POX) and superoxide dismutase (SOD) were determined in the fresh leaves obtained from 15-d-old seedlings. The NaCl applications increased CAT and SOD activities in both cultivars, compared to those of untreated control plants. In addition, the NaCl increased POX activity in the salt-tolerant while decreased in the salt-sensitive cultivar. In control plants of the both cultivars, 0.1 mM SA increased CAT activity, while 0.01 mM SA slightly decreased it. SA treatments also stimulated SOD and POX activity in the salt-tolerant cultivar but significantly decreased POX activity and had no effect on SOD activity in the saltsensitive cultivar. Under salinity, the SA treatments significantly inhibited CAT activity, whereas increased POX activity. The increases in POX activity caused by SA were more pronounced in the salt-tolerant than in the salt-sensitive cultivar. SOD activity was increased by 0.01 mM SA in the salt-tolerant while increased by 0.1 mM SA treatment in the salt-sensitive cultivar.
This study was carried out to better understand the role of salicylic acid (SA) applied before cold stress in the cold tolerance mechanism. Two barley (Hordeum vulgare) cultivars, cold-sensitive (Akhisar) and cold-tolerant (Tokak), were used and 0.1 mM SA was applied to 7-d-old barley seedlings growing under control conditions (20/18 °C). The seedlings were transferred to cold chamber (7/5 °C) at the age of 14, 21, and 28 d. After three days, the leaves were harvested to determine the activities of apoplastic antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX), ice nucleation activity and electrophoretic patterns of apoplastic proteins. Cold treatment decreased the activities of all enzymes in cold-sensitive cultivar, however, it increased CAT and POX activities in coldtolerant cultivar. Exogenous SA increased enzyme activities in both cultivars. Ice nucleation activity increased by cold treatment, especially in 17-d-old seedlings of both cultivars. In addition, SA treatment increased ice nucleation activity in all examined samplings of both cultivars. SA treatment caused accumulation or de novo synthesis of some apoplastic proteins. The results of the present study show that exogenous SA can improve cold tolerance by regulating the activities of apoplastic antioxidative enzymes, ice nucleation activity, and the patterns of apoplastic proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.