Forest destruction and disturbance can have long-term consequences for species diversity and ecosystem processes such as seed dispersal. Understanding these consequences is a crucial component of conserving vulnerable ecosystems. In the heavily fragmented and disturbed Kakamega Forest, western Kenya, we studied seed dispersal of Prunus africana (Rosaceae). In the main forest, five forest fragments, and differently disturbed sites, we quantified the overall frugivore community as an indicator for species diversity. Furthermore, we determined the frugivores on 28 fruiting P. africana trees, estimated seed dispersal, crop size and the general fruit availability of surrounding trees. During the overall frugivore census we recorded 49 frugivorous species; 36 of them were observed visiting P. africana trees and feeding on their fruits. Although overall frugivore species richness was 1.1 times lower in fragments than in main forest sites and 1.02 times higher in highly disturbed than in less disturbed sites, P. africana experienced 1.1 times higher numbers of frugivores in fragments than in main forest sites and 1.5 times higher numbers of frugivores in highly disturbed than in less disturbed sites. Correspondingly, seed dispersal was 1.5 times higher in fragments than in main forest sites and 1.5 times higher in more disturbed than less disturbed sites. Fruit availability of surrounding trees and crop size influenced the number of visitors to some degree. Thus, the number of dispersed seeds seemed to be slightly higher in fragmented and highly disturbed sites. This indicates that loss of single species does not necessarily lead to a decrease of ecosystem services. However, loss of diversity could be a problem in the long term, as a multitude of species might act as buffer against future environmental change.
Many plants depend on frugivorous animals for the dispersal of their seeds. However, it is only poorly known whether regional differences in frugivore diversity have consequences for seed dispersal, seedling establishment, and the spatial distribution of seedlings and trees. This comparative study of seed dispersal investigated the consequences of regional differences in frugivore diversity for two tree species of the genus Commiphora. C. harveyi was studied in South Africa where avian frugivore diversity is high, C. guillaumini was studied in Madagascar where the avian frugivore community is depauperate. At both study sites, the percentages of handled and dispersed seeds in Commiphora trees were quantified by fruit traps, and visitation rates, seed handling rates and dispersal rates were quantified for each animal species for two consecutive years. Seedlings were mapped and the spatial distribution of trees quantified. At both study sites, fruits were mainly eaten by birds. The total percentage of dispersed seeds in South Africa was significantly higher than in Madagascar (70.8% vs. 7.9%) because there was a lack of effective dispersers that swallowed seeds in Madagascar. Seed dispersal benefit, i.e. the increase in the probability of becoming established as a seedling away from parent trees due to dispersal was much higher in Madagascar (80 times higher probability) compared to South Africa (6 times higher). Corresponding with the different dispersal percentages, seedlings in South Africa were found at relatively large distances from the nearest Commiphora tree (median distance=21.0 m), whereas in Madagascar seedlings were found mostly under and close to the nearest Commiphora tree (median distance=0.9 m). Finally, Commiphora trees in the Malagasy study site were clumped, but were more randomly distributed in the South African study site. These results suggest that regional differences in frugivore diversity and behaviour strongly affect seed dispersal of trees, seedling establishment and the spatial distribution of seedlings and trees.
Forest fragmentation and selective logging are two main drivers of global environmental change and modify biodiversity and environmental conditions in many tropical forests. The consequences of these changes for the functioning of tropical forest ecosystems have rarely been explored in a comprehensive approach. In a Kenyan rainforest, we studied six animal-mediated ecosystem processes and recorded species richness and community composition of all animal taxa involved in these processes. We used linear models and a formal meta-analysis to test whether forest fragmentation and selective logging affected ecosystem processes and biodiversity and used structural equation models to disentangle direct from biodiversity-related indirect effects of human disturbance on multiple ecosystem processes. Fragmentation increased decomposition and reduced antbird predation, while selective logging consistently increased pollination, seed dispersal and army-ant raiding. Fragmentation modified species richness or community composition of five taxa, whereas selective logging did not affect any component of biodiversity. Changes in the abundance of functionally important species were related to lower predation by antbirds and higher decomposition rates in small forest fragments. The positive effects of selective logging on bee pollination, bird seed dispersal and army-ant raiding were direct, i.e. not related to changes in biodiversity, and were probably due to behavioural changes of these highly mobile animal taxa. We conclude that animal-mediated ecosystem processes respond in distinct ways to different types of human disturbance in Kakamega Forest. Our findings suggest that forest fragmentation affects ecosystem processes indirectly by changes in biodiversity, whereas selective logging influences processes directly by modifying local environmental conditions and resource distributions. The positive to neutral effects of selective logging on ecosystem processes show that the functionality of tropical forests can be maintained in moderately disturbed forest fragments. Conservation concepts for tropical forests should thus include not only remaining pristine forests but also functionally viable forest remnants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.