Amitriptyline, a tricyclic antidepressant, has been used in the clinic to treat a number of disorders, in particular major depression and neuropathic pain. In the 1970s the ability of tricyclic antidepressants to inhibit acid sphingomyelinase (ASM) was discovered. The enzyme ASM catalyzes the hydrolysis of sphingomyelin to ceramide. ASM and ceramide were shown to play a crucial role in a wide range of diseases, including cancer, cystic fibrosis, diabetes, Alzheimer's disease, and major depression, as well as viral (e.g., measles virus) and bacterial (e.g., Staphylococcus aureus, Pseudomonas aeruginosa) infections. Ceramide molecules may act in these diseases by the alteration of membrane biophysics, the self-association of ceramide molecules within the cell membrane and the ultimate formation of larger ceramide-enriched membrane domains/platforms. These domains were shown to serve the clustering of certain receptors such as CD95 and may also act in the above named diseases. The potential to block the generation of ceramide by inhibiting the ASM has opened up new therapeutic approaches for the treatment of these conditions. Since amitriptyline is one of the longest used clinical drugs and side effects are well studied, it could potentially become a cheap and easily accessible medication for patients suffering from these diseases. In this review, we aim to provide an overview of current in vitro and in vivo studies and clinical trials utilizing amitriptyline to inhibit ASM and contemplate possible future applications of the drug.
We previously demonstrated that tumour necrosis factor (TNF)-induced ceramide production by endosomal acid sphingomyelinase (A-SMase) couples to apoptosis signalling via activation of cathepsin D and cleavage of Bid, resulting in caspase-9 and caspase-3 activation. The mechanism of TNF-mediated A-SMase activation within the endolysosomal compartment is poorly defined. Here, we show that TNF-induced A-SMase activation depends on functional caspase-8 and caspase-7 expression. The active forms of all three enzymes, caspase-8, caspase-7 and A-SMase, but not caspase-3, colocalize in internalized TNF receptosomes. While caspase-8 and caspase-3 are unable to induce activation of purified pro-A-SMase, we found that caspase-7 mediates A-SMase activation by direct interaction resulting in proteolytic cleavage of the 72-kDa pro-A-SMase zymogen at the non-canonical cleavage site after aspartate 253, generating an active 57 kDa A-SMase molecule. Caspase-7 down modulation revealed the functional link between caspase-7 and A-SMase, confirming proteolytic cleavage as one further mode of A-SMase activation. Our data suggest a signalling cascade within TNF receptosomes involving sequential activation of caspase-8 and caspase-7 for induction of A-SMase activation by proteolytic cleavage of pro-A-SMase.
JAK2-V617F-positive chronic myeloproliferative neoplasia (CMN) commonly displays dysfunction of integrins and adhesion molecules expressed on platelets, erythrocytes, and leukocytes. However, the mechanism by which the 2 major leukocyte integrin chains, β1 and β2, may contribute to CMN pathophysiology remained unclear. β1 (α4β1; VLA-4) and β2 (αLβ2; LFA-1) integrins are essential regulators for attachment of leukocytes to endothelial cells. We here showed enhanced adhesion of granulocytes from mice with JAK2-V617F knockin (JAK2+/VF mice) to vascular cell adhesion molecule 1- (VCAM1-) and intercellular adhesion molecule 1-coated (ICAM1-coated) surfaces. Soluble VCAM1 and ICAM1 ligand binding assays revealed increased affinity of β1 and β2 integrins for their respective ligands. For β1 integrins, this correlated with a structural change from the low- to the high-affinity conformation induced by JAK2-V617F. JAK2-V617F triggered constitutive activation of the integrin inside-out signaling molecule Rap1, resulting in translocation toward the cell membrane. Employing a venous thrombosis model, we demonstrated that neutralizing anti-VLA-4 and anti-β2 integrin antibodies suppress pathologic thrombosis as observed in JAK2+/VF mice. In addition, aberrant homing of JAK2+/VF leukocytes to the spleen was inhibited by neutralizing anti-β2 antibodies and by pharmacologic inhibition of Rap1. Thus, our findings identified cross-talk between JAK2-V617F and integrin activation promoting pathologic thrombosis and abnormal trafficking of leukocytes to the spleen.
We recently described a preclinical model of Graves' orbitopathy (GO), induced by genetic immunization of eukaryotic expression plasmid encoding human TSH receptor (TSHR) A-subunit by muscle electroporation in female BALB/c mice. The onset of orbital pathology is characterized by muscle inflammation, adipogenesis, and fibrosis. Animal models of autoimmunity are influenced by their environmental exposures. This follow-up study was undertaken to investigate the development of experimental GO in 2 different locations, run in parallel under comparable housing conditions. Functional antibodies to TSHR were induced in TSHR A-subunit plasmid-immunized animals, and antibodies to IGF-1 receptor α-subunit were also present, whereas control animals were negative in both locations. Splenic T cells from TSHR A-subunit primed animals undergoing GO in both locations showed proliferative responses to purified TSHR antigen and secreted interferon-γ, IL-10, IL-6, and TNF-α cytokines. Histopathological evaluation showed orbital tissue damage in mice undergoing GO, manifest by adipogenesis, fibrosis, and muscle damage with classic signs of myopathy. Although no inflammatory infiltrate was observed in orbital tissue in either location, the appearances were consistent with a "hit-and-run" immune-mediated inflammatory event. A statistically significant increase of cumulative incidence of orbital pathology when compared with control animals was shown for both locations, confirming onset of orbital dysimmune myopathy. Our findings confirm expansion of the model in different environments, accompanied with increased prevalence of T cell-derived proinflammatory cytokines, with relevance for pathogenesis. Wider availability of the model makes it suitable for mechanistic studies into pathogenesis and undertaking of novel therapeutic approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.