Both rectal and vaginal mucosal surfaces serve as transmission routes for pathogenic microorganisms. Vaccination through large intestinal mucosa, previously proven protective for both mucosal sites in animal studies, can be achieved successfully by direct intra-colorectal (i.c.r.) administration, which is, however, clinically impractical. Oral delivery seems preferable, but risks vaccine destruction in the upper gastrointestinal tract. Therefore, we designed a large intestine-targeted oral delivery with pH-dependent microparticles containing vaccine nanoparticles, which induced colorectal immunity in mice comparably to colorectal vaccination and protected against rectal or vaginal viral challenge. Conversely, vaccine targeted to the small intestine induced only small intestinal immunity and provided no rectal or vaginal protection, demonstrating functional compartmentalization within the gut mucosal immune system. Therefore, using this oral vaccine delivery system to target the large intestine, but not the small intestine, may represent a feasible novel strategy for immune protection of rectal and vaginal mucosa.
Leptin is a protein secreted by adipocytes that is important in regulating appetite and adiposity. Recent studies have suggested the presence of leptin receptors in the arcuate nucleus of the hypothalamus (ANH). Neonatal administration of monosodium glutamate (MSG) damages the ANH, resulting in obesity and neuroendocrine dysfunction. Neonatal administration of MSG was utilized to test the hypothesis that the anatomic site for many of leptin's actions is the ANH. Female control (n = 6) and MSG-treated rats (n = 7) were implanted for 14 days with osmotic minipumps containing phosphate-buffered saline or leptin (1 mg.kg-1.day-1). Leptin suppressed (P < 0.05) body weight gain in controls but did not suppress weight gain in MSG-treated rats. Leptin decreased (P < 0.05) fat depots in controls but had no effect in MSG-treated rats. Night feeding was suppressed (P < 0.05) in leptin-treated control rats. MSG-treated rats showed a suppression in food intake that was of a smaller magnitude and appeared later in the course of leptin treatment. These findings suggest that leptin mediates some physiological actions related to fat mobilization via receptors located in the ANH.
Ethanol increases taurine efflux in the nucleus accumbens or ventral striatum (VS), a dopaminergic terminal region involved in positive reinforcement. However, this has been found only at ethanol doses above 1 g/kg intraperitoneally, which is higher than what most rats will self-administer. We used a sensitive on-line assay of microdialysate content to test whether lower doses of ethanol selectively increase taurine efflux in VS as opposed to other dopaminergic regions not involved in reinforcement (e.g., dorsal striatum; DS). Adult male rats with microdialysis probes in VS or DS were injected with ethanol (0, 0.5, 1, and 2 g/kg intraperitoneally), and the amino acid content of the dialysate was measured every 11 sec using capillary electrophoresis and laser-induced fluorescence detection. In VS, 0.5 g/kg ethanol significantly increased taurine levels by 20% for 10 min. A similar increase was seen after 1 g/kg ethanol, which lasted for about 20 min after injection. A two-phased taurine efflux was observed with the 2.0 g/kg dose, where taurine was increased by 2-fold after 5 min but it remained elevated by 30% for at least 60 min. In contrast, DS exhibited much smaller dose-related increases in taurine. Glycine, glutamate, serine, and gamma-aminobutyric acid were not systematically affected by lower doses of ethanol; however, 2 g/kg slowly decreased these amino acids in both brain regions during the hour after injection. These data implicate a possible role of taurine in the mechanism of action of ethanol in the VS. The high sensitivity and time resolution afforded by capillary electrophoresis and laser-induced fluorescence detection will be useful for detecting subtle changes of neuronally active amino acids levels due to low doses of ethanol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.