Two extracellular enzymes (MsP1 and MsP2) capable of efficient beta-carotene degradation were purified from culture supernatants of the basidiomycete Marasmius scorodonius (garlic mushroom). Under native conditions, the enzymes exhibited molecular masses of approximately 150 and approximately 120 kDa, respectively. SDS-PAGE and mass spectrometric data suggested a composition of two identical subunits for both enzymes. Biochemical characterisation of the purified proteins showed isoelectric points of 3.7 and 3.5, and the presence of heme groups in the active enzymes. Partial amino acid sequences were derived from N-terminal Edman degradation and from mass spectrometric ab initio sequencing of internal peptides. cDNAs of 1,604 to 1,923 bp, containing open reading frames (ORF) of 508 to 513 amino acids, respectively, were cloned from a cDNA library of M. scorodonius. These data suggest glycosylation degrees of approximately 23% for MsP1 and 8% for MsP2. Databank homology searches revealed sequence homologies of MsP1 and MsP2 to unusual peroxidases of the fungi Thanatephorus cucumeris (DyP) and Termitomyces albuminosus (TAP).
To biotechnologically produce norisoprenoid flavor compounds, two extracellular peroxidases (MsP1 and MsP2) capable of degrading carotenoids were isolated from the culture supernatants of the basidiomycete Marasmius scorodonius (garlic mushroom). The encoding genes were cloned from genomic DNA and cDNA libraries, and databank homology searches identified MsP1 and MsP2 as members of the so-called "DyP-type" peroxidase family. Wild type enzymes and recombinant peroxidases expressed in Escherichia coli were employed for the release of norisoprenoids from various terpenoid precursor molecules. Carotenes, xanthophylls, and apocarotenals were subjected to the enzymatic degradation. Released volatile products were characterized by GC-FID and GC-MS, whereas nonvolatile breakdown products were analyzed by means of HPLC-DAD and HPLC-MS. C13 norisoprenoids together with C10 products proved to be the main volatile degradation products in each case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.