SummaryThe synthesis of extracellular enzymes and extracellular polysaccharide (EPS) in Xanthomonas campestris pv. campestris (Xcc) is regulated by a cluster of genes called rpf (for regulation of pathogenicity factors). Two of the genes, rpfF and rpfB, have previously been implicated in the synthesis of a diffusible regulatory molecule, DSF. Here, we describe a screen of transposon insertion mutants of Xcc that identified two DSF-overproducing strains. In each mutant, the gene disrupted is rpfC, which encodes a hybrid two-component regulatory protein in which the sensor and regulator domains are fused and which contains an additional C-terminal phosphorelay (HPt) domain. We show that rpfC is in an operon with rpfH and rpfG. The predicted protein RpfG has a regulatory input domain attached to a specialized version of an HD domain, previously suggested to function in signal transduction. The predicted protein RpfH is structurally related to the sensory input domain of RpfC. We show that RpfC and RpfG act positively to regulate the synthesis of extracellular enzymes and EPS, but that RpfC acts negatively to regulate the synthesis of DSF. We propose that RpfGHC is a signal transduction system that couples the synthesis of pathogenicity factors to sensing of environmental signals that may include DSF itself.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.