A selection of normal human tissues was investigated for the presence of lamins B1, B2, and A-type lamins, using a panel of antibodies specific for the individual lamin subtypes. By use of immunoprecipitation and two-dimensional immunoblotting techniques we demonstrated that these antibodies do not cross-react with other lamin subtypes and that a range of different phosphorylation isoforms is recognized by each antibody. The lamin B2 antibodies appeared to decorate the nuclear lamina in all tissues examined, except hepatocytes, in which very little lamin B2 expression was observed. In contrast to previous studies, which suggested the ubiquitous expression of lamin B1 in mammalian tissues, we show that lamin B1 is not as universally distributed throughout normal human tissues as was to be expected from previous studies. Muscle and connective tissues are negative, while in epithelial cells lamin B1 seemed to be preferentially detected in proliferating cells. These results correspond well with those obtained for lamin B1 in chicken tissues. The expression of A-type lamins is most prominent in well-differentiated epithelial cells. Relatively undifferentiated and proliferating cells in epithelia showed a clearly reduced expression of A-type lamins. Furthermore, most cells of neuroendocrine origin as well as most hematopoietic cells were negative for A-type lamin antibodies.
Expression of the A-type lamins was studied in the lung adenocarcinoma cell line GLC-A1. A-type lamins, consisting of lamin A and C, are two products arising from the same gene by alternative splicing. Northern blotting showed in GLC-A1 a relatively low expression level of lamin C and an even lower expression level of lamin A as compared to other adenocarcinoma cell lines. Immunofluorescence studies revealed highly irregular nuclear inclusions of lamin A, suggesting protein or gene expression abnormalities. Reverse transcriptase-polymerase chain reaction-based cDNA analysis followed by sequencing indicated the presence of an as yet unidentified alternative splicing product of the lamin A/C gene. This product differs from lamin A by the absence of the 5' part of exon 10 (90 nucleotides). Therefore we propose to designate this product lamin Adelta10. Deletion of the 30 amino acids encoded by exon 10 was predicted to result in a shift in pI of the protein from 7.4 to approximately 8.6, which was confirmed by two-dimensional immunoblotting. mRNA analysis in a variety of cell lines, normal colon tissue as well as carcinomas demonstrated the presence of lamin Adelta 10 in all samples examined, suggesting its presence in a variety of cell types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.