The main aim of ex situ programmes in conservation is to provide a suitable source of individuals for future reintroductions or reinforcement of existing populations. A fundamental prerequisite is creating and maintaining healthy and sustainable captive populations that show high levels of phenotypic and genetic similarity to their wild counterparts. The Eurasian lynx (Lynx lynx) is a model of a locally extinct species that has been subject to long-term captive breeding and of past and ongoing reintroduction efforts. To test for genetic suitability of ex situ population, a comparative genetic evaluation including in situ populations was undertaken. The assignment analysis of 97 captive lynx from 45 European zoos, wildlife parks and private breeds was performed using 124 lynx from different wild Eurasian populations belonging to three evolutionary lineages: the Carpathian, the Northern, and the Siberian lynx. The results showed a high proportion of Siberian lynx (51%) in the European captive lynx population. Remaining captive animals were assigned to either the Carpathian (28%), or the Northern lynx lineage (13%). Admixture between lineages was rather low (8%). Notably, no or very low difference in genetic diversity was detected between the wild and captive lynx populations. Our results support the potential of the captive population to provide genetically suitable individuals for genetic rescue programmes. The transfer of genes between isolated populations, including those in captivity, should become an important management tool to preserve genetic variability and prevent inbreeding depression in native and reintroduced populations of this iconic predator.
Dispersal is a key process for the maintenance of intraspecific genetic diversity by ensuring gene flow within and between populations. Despite the ongoing expansion of large carnivores in Europe, lynx populations remain fragmented, isolated, and threatened by inbreeding and loss of genetic diversity. In the course of large carnivore monitoring in the Czech Republic, several biological samples of Eurasian lynx were collected outside the permanent occurrence of this species. Using microsatellite genotyping we identified these as four dispersing lynx males and applied multiple methods (Bayesian clustering in STRU CTU RE, Principal Component Analysis (PCA), frequency-based method in GENECLASS2, and machine-learning framework in assignPOP) to assign them to possible source populations. For this we used genotypes from five European lynx populations: the Bohemian-Bavarian-Austrian (N = 36), Carpathian (N = 43), Scandinavian (N = 20), Baltic (N = 15), and Harz (N = 23) population. All four dispersers were successfully assigned to different source populations within Europe and each was recorded at a distance of more than 98 km from the edge of the distribution of the source population identified. Such movements are among the longest described for lynx in Central Europe to this point. The findings indicate the ability of lynx males to disperse in human-dominated landscape thus facilitation of these movements via creation and/or protection of potential migratory corridors together with protection of dispersing individuals should be of high importance in conservation of this iconic predator in Central Europe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.