Heavy metals are taken up by the vascular plant root system from water solutions in cationic forms. Subsequently, during both short and long distance transport to other plant tissues, cation forms are incorporated to many bioorganic compounds differing in stability, ionic character and physico-chemical properties such as solubility in lipid structures and mobility across cell membrane systems. Many sequential and single step extraction methods have been elaborated for characterization of the role of individual components of plant cells components in transport and detoxication of heavy metals. In our study, dry biomass of giant reed (Arundo donax L.) grown in hydroponic media spiked with 65ZnCl2 and 109CdCl2 was treated with dithizone solutions as complexing ligand in order to convert free Zn2+ and Cd2+ ions to corresponding dithizonates. Treatment with dithizone showed that up to 67 % of the total plant Cd and 56 % of the total plant Zn were transformed to dithizonate complexes extracted with chloroform. Extraction of biomass with Folch reagent showed that up to 48 % of the total root cadmium and up to 18 % of the total shoot cadmium is bound in lipid fraction. Zinc was not found in lipid fraction of root and shoot. Derivatization of the dried root and shoot lipid fraction by dithizone showed that two third of Cd in root and practically all Cd in shoot lipid fraction could be transformed to Cd-dithizonate. Methods of biomass treating with complexing ligands and a method of sequential extraction procedures with non-polar organic solvents and radiotracer methodology seem to be useful methods for the study of metal speciation and distribution in vascular plants
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.