Soluble amyloid-β (Aβ) aggregates of various sizes, ranging from dimers to large protofibrils, have been associated with neurotoxicity and synaptic dysfunction in Alzheimer's Disease (AD). To investigate the properties of biologically relevant Aβ species, brain extracts from amyloid β protein precursor (AβPP) transgenic mice and AD patients as well as synthetic Aβ preparations were separated by size under native conditions with density gradient ultracentrifugation. The fractionated samples were then analyzed with atomic force microscopy (AFM), ELISA, and MTT cell viability assay. Based on AFM appearance and immunoreactivity to our protofibril selective antibody mAb158, synthetic Aβ42 was divided in four fractions, with large aggregates in fraction 1 and the smallest species in fraction 4. Synthetic Aβ aggregates from fractions 2 and 3 proved to be most toxic in an MTT assay. In AβPP transgenic mouse brain, the most abundant soluble Aβ species were found in fraction 2 and consisted mainly of Aβ40. Also in AD brains, Aβ was mainly found in fraction 2 but primarily as Aβ42. All biologically derived Aβ from fraction 2 was immunologically discriminated from smaller species with mAb158. Thus, the predominant species of biologically derived soluble Aβ, natively separated by density gradient ultracentrifugation, were found to match the size of the neurotoxic, 80–500 kDa synthetic Aβ protofibrils and were equally detected with mAb158.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.