Angiopoietin-1 (Ang-1), a ligand of the endothelium-specific receptor Tie-2, inhibits permeability in the mature vasculature, but the mechanism remains unknown. Here we show that Ang-1 signals Rho family GTPases to organize the cytoskeleton into a junction-fortifying arrangement that enhances the permeability barrier function of the endothelium. Ang-1 phosphorylates Tie-2 and its downstream effector phosphatidylinositol 3-kinase. This induces activation of one endogenous GTPase, Rac1, and inhibition of another, RhoA. Loss of either part of this dual effect abrogates the cytoskeletal and anti-permeability actions of Ang-1, suggesting that coordinated GTPase regulation is necessary for the vessel-sealing effects of Ang-1. p190 RhoGAP, a GTPase regulatory protein, provides this coordinating function as it is phosphorylated by Ang-1 treatment, requires Rac1 activation, and is necessary for RhoA inhibition. Ang-1 prevents the cytoskeletal and pro-permeability effects of endotoxin but requires p190 RhoGAP to do so. Treatment with p190 RhoGAP small interfering RNA completely abolishes the ability of Ang-1 to rescue endotoxemia-induced pulmonary vascular leak and inflammation in mice. We conclude that Ang-1 prevents vascular permeability by regulating the endothelial cytoskeleton through coordinated and opposite effects on the Rho GTPases Rac1 and RhoA. By linking Rac1 activation and RhoA inhibition, p190 RhoGAP is critical to the protective effects of Ang-1 against endotoxin. These results provide mechanistic evidence that targeting the endothelium through Tie-2 may offer specific therapeutic strategies in life-threatening endotoxemic conditions such as sepsis and acute respiratory distress syndrome. Angiopoietin-1 (Ang-1)3 is a 498-amino acid secreted glycoprotein whose germ line depletion leads to several cardiovascular defects that result in embryonic lethality (1, 2). Although made by numerous cell types, the actions of Ang-1 are primarily mediated by a receptor tyrosine kinase, Tie-2, whose expression is largely restricted to endothelial cells (ECs). Critical roles for Ang-1 and Tie-2 have been described in the formation of the primitive cardiac tube and embryonic vasculature (3). Although necessary for developmental angiogenesis to occur, Ang-1 expression and Tie-2 phosphorylation persist into adulthood in organs not considered angiogenically active (4), suggesting a nonangiogenic role in the mature vasculature. In fact, Ang-1 has been shown to protect adult blood vessels against plasma leakage because of vascular endothelial growth factor or mustard oil (5, 6). However, the mechanism by which Ang-1 defends against vascular leakage in vivo has remained largely unknown.Permeability is a tightly regulated feature of all vascular beds. A systemic increase in permeability, leading to a degree of vascular leak that impairs organ function, is a hallmark of sepsis, a lethal syndrome of multiorgan dysfunction that arises as a result of disseminated infection. We have previously shown that Tie-2 inhibition induces changes...
Endostatin, a collagen XVIII fragment, is a potent anti-angiogenic protein. We sought to identify its endothelial cell surface receptor(s). Alkaline phosphatase- tagged endostatin bound endothelial cells revealing two binding affinities. Expression cloning identified glypican, a cell surface proteoglycan as the lower-affinity receptor. Biochemical and genetic studies indicated that glypicans' heparan sulfate glycosaminoglycans were critical for endostatin binding. Furthermore, endostatin selected a specific octasulfated hexasaccharide from a sequence in heparin. We have also demonstrated a role for endostatin in renal tubular cell branching morphogenesis and show that glypicans serve as low-affinity receptors for endostatin in these cells, as in endothelial cells. Finally, antisense experiments suggest the critical importance of glypicans in mediating endostatin activities.
Endostatin, a type XVIII collagen fragment, is a potent antiangiogenic molecule that inhibits endothelial cell migration, promotes apoptosis, and induces cell cycle arrest in vitro. We have investigated the mechanism by which endostatin causes G 1 arrest in endothelial cells. Endostatin decreased the hyperphosphorylated retinoblastoma gene product and down-regulated cyclin D1 mRNA and protein. Importantly, endostatin was unable to arrest cyclin D1 overexpressing endothelial cells, suggesting that cyclin D1 is a critical target for endostatin action. Next, we analyzed cyclin D1 promoter activity in endothelial cells and found that endostatin down-regulated the cyclin D1 promoter. Using a series of deletion and mutant promoter constructs, we identified the LEF1 site in the cyclin D1 promoter as essential for the inhibitory effect of endostatin. Finally, we showed that endostatin can repress cyclin D1 promoter activity in cells over-expressing -catenin but not in cells over-expressing a transcriptional activator that functions through the LEF1 site and is insensitive to -catenin. Collectively, our data pointed to a role for cyclin D1, and in particular, transcription through the LEF1 site as critical for endostatin action in vitro and suggest that -catenin is a target for endostatin.
Endostatin (ES) is a fragment of collagen XVIII that possesses antiangiogenic activity. To gain insight into ES-mediated signaling, we studied the effects of ES RNA on Xenopus embryogenesis and observed developmental abnormalities consistent with impaired Wnt signaling. ES RNA blocked the axis duplication induced by β-catenin, partially suppressed Wnt-dependent transcription, and stimulated degradation of both wild-type and “stabilized” forms of β-catenin, the latter suggesting that ES signaling does not involve glycogen synthase kinase 3. Moreover, ES uses a pathway independent of the Siah1 protein in targeting β-catenin for proteasome-mediated degradation. ES failed to suppress the effects of T cell–specific factor (TCF)-VP16 (TVP), a constitutive downstream transcriptional activator that acts independently of β-catenin. Importantly, these data were replicated in endothelial cells and also in the DLD-1 colon carcinoma cells with the mutated adenomatous polyposis coli protein. Finally, suppression of endothelial cell migration and inhibition of cell cycle by ES were reversed by TVP. Though high levels of ES were used in both the Xenopus and endothelial cell studies and the effects on β-catenin signaling were modest, these data argue that at pharmacological concentrations ES may impinge on Wnt signaling and promote β-catenin degradation.
A critical role for Tie1, an orphan endothelial receptor, in blood vessel morphogenesis has emerged from mutant mouse studies. Moreover, it was recently demonstrated that certain angiopoietin (Ang) family members can activate Tie1. We report here that Ang1 induces Tie1 phosphorylation in endothelial cells. Tie1 phosphorylation was, however, Tie2 dependent because 1) Ang1 failed to induce Tie1 phosphorylation when Tie2 was down-regulated in endothelial cells; 2) Tie1 phosphorylation was induced in the absence of Ang1 by either a constitutively active form of Tie2 or a Tie2 agonistic antibody; 3) in HEK 293 cells Ang1 phosphorylated a form of Tie1 without kinase activity when coexpressed with Tie2, and Ang1 failed to phosphorylate Tie1 when coexpressed with kinase-defective Tie2. Ang1-mediated AKT and 42/44MAPK phosphorylation is predominantly Tie2 mediated, and Tie1 down-regulates this pathway. Finally, based on a battery of in vitro and in vivo data, we show that a main role for Tie1 is to modulate blood vessel morphogenesis by virtue of its ability to down-regulate Tie2-driven signaling and endothelial survival. Our new observations help to explain why Tie1 null embryos have increased capillary densities in several organ systems. The experiments also constitute a paradigm for how endothelial integrity is fine-tuned by the interplay between closely related receptors by a single growth factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.