Thousands of papers using resting-state functional magnetic resonance imaging (RS-fMRI) have been published on brain disorders. Results in each paper may have survived correction for multiple comparison. However, since there have been no robust results from large scale meta-analysis, we do not know how many of published results are truly positives. The present meta-analytic work included 60 original studies, with 57 studies (4 datasets, 2266 participants) that used a between-group design and 3 studies (1 dataset, 107 participants) that employed a within-group design. To evaluate the effect size of brain disorders, a very large neuroimaging dataset ranging from neurological to psychiatric disorders together with healthy individuals have been analyzed. Parkinson's disease off levodopa (PD-off) included 687 participants from 15 studies. PD on levodopa (PD-on) included 261 participants from 9 studies. Autism spectrum disorder (ASD) included 958 participants from 27 studies. The meta-analyses of a metric named amplitude of low frequency fluctuation (ALFF) showed that the effect size (Hedges' g) was 0.19 -0.39 for the 4 datasets using between-group design and 0.46 for the dataset using within-group design. The effect size of PD-off, PD-on and ASD were 0.23, 0.39, and 0.19, respectively. Using the meta-analysis results as the robust results, the between-group design results of each study showed high false negative rates (median 99%), high false discovery rates (median 86%), and low accuracy (median 1%), regardless of whether stringent or liberal multiple comparison correction was used. The findings were similar for 4 RS-fMRI metrics including ALFF, regional homogeneity, and degree centrality, as well as for another widely used RS-fMRI metric namely seed-based functional connectivity. These observations suggest that multiple comparison correction does not control for false discoveries across multiple studies when the effect sizes are relatively small. Meta-analysis on un-thresholded t-maps is critical for the recovery of ground truth. We recommend that to achieve high reproducibility through meta-analysis, the neuroimaging research field should share raw data or, at minimum, provide un-thresholded statistical images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.