de Lausanne (EPFL), Switzerland Data races are one of the main causes of concurrency problems in multithreaded programs. Whether all data races are bad, or some are harmful and others are harmless, is still the subject of vigorous scientific debate [Narayanasamy et al. 2007;. What is clear, however, is that today's code has many data races [Kasikci et al. 2012;Jin et al. 2012;Erickson et al. 2010], and fixing data races without introducing bugs is time consuming [Godefroid and Nagappan 2008]. Therefore, it is important to efficiently identify data races in code and understand their consequences to prioritize their resolution.We present Portend + , a tool that not only detects races but also automatically classifies them based on their potential consequences: Could they lead to crashes or hangs? Could their effects be visible outside the program? Do they appear to be harmless? How do their effects change under weak memory models? Our proposed technique achieves high accuracy by efficiently analyzing multiple paths and multiple thread schedules in combination, and by performing symbolic comparison between program outputs.We ran Portend + on seven real-world applications: it detected 93 true data races and correctly classified 92 of them, with no human effort. Six of them were harmful races. Portend + 's classification accuracy is up to 89% higher than that of existing tools, and it produces easy-to-understand evidence of the consequences of "harmful" races, thus both proving their harmfulness and making debugging easier. We envision Portend + being used for testing and debugging, as well as for automatically triaging bug reports.
Modern data center applications have deep software stacks, with instruction footprints that are orders of magnitude larger than typical instruction cache (I-cache) sizes. To efficiently prefetch instructions into the I-cache despite large application footprints, modern server-class processors implement a decoupled frontend with Fetch Directed Instruction Prefetching (FDIP). In this work, we first characterize the limitations of a decoupled frontend processor with FDIP and find that FDIP suffers from significant Branch Target Buffer (BTB) misses. We also find that existing techniques (e.g., stream prefetchers and predecoders) are unable to mitigate these misses, as they rely on an incomplete understanding of a program's branching behavior.To address the shortcomings of existing BTB prefetching techniques, we propose Twig, a novel profile-guided BTB prefetching mechanism. Twig analyzes a production binary's execution profile to identify critical BTB misses and inject BTB prefetch instructions into code. Additionally, Twig coalesces multiple non-contiguous BTB prefetches to improve the BTB's locality. Twig exposes these techniques via new BTB prefetch instructions. Since Twig prefetches BTB entries without modifying the underlying BTB organization, it is easy to adopt in modern processors. We study Twig's behavior across nine widely-used data center applications, and demonstrate that it achieves an average 20.86% (up to 145%) performance speedup
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.