MotivationPrecision medicine requires the ability to predict the efficacies of different treatments for a given individual using high-dimensional genomic measurements. However, identifying predictive features remains a challenge when the sample size is small. Incorporating expert knowledge offers a promising approach to improve predictions, but collecting such knowledge is laborious if the number of candidate features is very large.ResultsWe introduce a probabilistic framework to incorporate expert feedback about the impact of genomic measurements on the outcome of interest and present a novel approach to collect the feedback efficiently, based on Bayesian experimental design. The new approach outperformed other recent alternatives in two medical applications: prediction of metabolic traits and prediction of sensitivity of cancer cells to different drugs, both using genomic features as predictors. Furthermore, the intelligent approach to collect feedback reduced the workload of the expert to approximately 11%, compared to a baseline approach.Availability and implementationSource code implementing the introduced computational methods is freely available at https://github.com/AaltoPML/knowledge-elicitation-for-precision-medicine.Supplementary information
Supplementary data are available at Bioinformatics online.
The use of implicit relevance feedback from neurophysiology could deliver effortless information retrieval. However, both computing neurophysiologic responses and retrieving documents are characterized by uncertainty because of noisy signals and incomplete or inconsistent representations of the data. We present the first‐of‐its‐kind, fully integrated information retrieval system that makes use of online implicit relevance feedback generated from brain activity as measured through electroencephalography (EEG), and eye movements. The findings of the evaluation experiment (N = 16) show that we are able to compute online neurophysiology‐based relevance feedback with performance significantly better than chance in complex data domains and realistic search tasks. We contribute by demonstrating how to integrate in interactive intent modeling this inherently noisy implicit relevance feedback combined with scarce explicit feedback. Although experimental measures of task performance did not allow us to demonstrate how the classification outcomes translated into search task performance, the experiment proved that our approach is able to generate relevance feedback from brain signals and eye movements in a realistic scenario, thus providing promising implications for future work in neuroadaptive information retrieval (IR).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.