This paper proposes a real-time balance control technique that can be implemented to bipedal robots (exoskeletons, humanoids) whose ankle joints are powered via variable physical stiffness actuators. To achieve active balancing, an abstracted biped model, torsional spring-loaded flywheel, is utilized to capture approximated angular momentum and physical stiffness, which are of importance in postural balancing. In particular, this model enables us to describe the mathematical relation between Zero Moment Point and physical stiffness. The exploitation of variable physical stiffness leads to the following contributions: i) Variable physical stiffness property is embodied in a legged robot control task, for the first time in the literature to the authors' knowledge. ii) Through experimental studies conducted with our bipedal exoskeleton, the advantages of variable physical stiffness strategy are demonstrated with respect to the optimal constant stiffness strategy. The results indicate that the variable stiffness strategy provides more favorable results in terms of external disturbance dissipation, mechanical power reduction, and ZMP/CoM position regulation.
Abstract-This paper presents a wearable upper body exoskeleton system with a model based compensation control framework to support robot-aided shoulder-elbow rehabilitation and power assistance tasks. To eliminate the need for EMG and force sensors, we exploit off-the-shelf compensation techniques developed for robot manipulators. Thus target rehabilitation tasks are addressed by using only encoder readings.A proof of concept evaluation was conducted with 5 able-bodied participants. The patient-active rehabilitation task was realized via observer-based user torque estimation, in which resistive forces were adjusted using virtual impedance. In the patient-passive rehabilitation task, the proposed controller enabled precise joint tracking with a maximum positioning error of 0.25 degrees. In the power assistance task, the users' muscular activities were reduced up to 85% while exercising with a 5 [kg] dumbbell. Therefore, the exoskeleton system was regarded as being useful for the target tasks; indicating that it has a potential to promote robot-aided therapy protocols.
In this paper, we introduce our ongoing work on the development of an upper body exoskeleton robot, driven by a pneumatic-electric hybrid actuation system. Since the limb of an exoskeleton robot needs to have small inertia to achieve agility and safety, using a heavy actuator is not preferable. Furthermore, we need to use backdrivable actuators that can generate sufficiently large torques to support user movements. These two requirements may seem contradictory. In order to cope with this development problem, we use a hybrid actuation system composed of Pneumatic Artificial Muscles (PAMs) and small-size electromagnetic motors. Although we and other research groups have already presented the advantage of the hybrid actuation system, we newly propose the usage of Bowden cable in a hybrid actuator to transmit the force generated by the PAMs to joints of our exoskeleton robot so that we can design a compact upper limb with small inertia. In addition, small size electric motors are mechanically connected to joints in order to compensate uncertainty generated by the PAM dynamics and the Bowden cable. We demonstrate that the proposed joint is backdrivable with the capability of large torque generation for the gravity compensation task both in One-DOF system with a dummy weight and right arm of the upper body exoskeleton with a mannequin arm. We also show the right arm exoskeleton can be moved using a torque input, extracted from sensory information via a goniometer.978-1-4799-6934-0/14/$31.00 ©2014 IEEE
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.