The genetic make-up of the host has a major influence on its response to combat pathogens. For influenza A virus, several single gene mutations have been described which contribute to survival, the immune response and clearance of the pathogen by the host organism. Here, we have studied the influence of the genetic background to influenza A H1N1 (PR8) and H7N7 (SC35M) viruses. The seven inbred laboratory strains of mice analyzed exhibited different weight loss kinetics and survival rates after infection with PR8. Two strains in particular, DBA/2J and A/J, showed very high susceptibility to viral infections compared to all other strains. The LD50 to the influenza virus PR8 in DBA/2J mice was more than 1000-fold lower than in C57BL/6J mice. High susceptibility in DBA/2J mice was also observed after infection with influenza strain SC35M. In addition, infected DBA/2J mice showed a higher viral load in their lungs, elevated expression of cytokines and chemokines, and a more severe and extended lung pathology compared to infected C57BL/6J mice. These findings indicate a major contribution of the genetic background of the host to influenza A virus infections. The overall response in highly susceptible DBA/2J mice resembled the pathology described for infections with the highly virulent influenza H1N1-1918 and newly emerged H5N1 viruses.
An infection represents a highly dynamic process involving complex biological responses of the host at many levels. To describe such processes at a global level, we recorded gene expression changes in mouse lungs after a non-lethal infection with influenza A virus over a period of 60 days. Global analysis of the large data set identified distinct phases of the host response. The increase in interferon genes and up-regulation of a defined NK-specific gene set revealed the initiation of the early innate immune response phase. Subsequently, infiltration and activation of T and B cells could be observed by an augmentation of T and B cell specific signature gene expression. The changes in B cell gene expression and preceding chemokine subsets were associated with the formation of bronchus-associated lymphoid tissue. In addition, we compared the gene expression profiles from wild type mice with Rag2 mutant mice. This analysis readily demonstrated that the deficiency in the T and B cell responses in Rag2 mutants could be detected by changes in the global gene expression patterns of the whole lung. In conclusion, our comprehensive gene expression study describes for the first time the entire host response and its kinetics to an acute influenza A infection at the transcriptome level.
The development of chronic obstructive pulmonary disease (COPD) pathogenesis remains unclear, but emerging evidence supports a crucial role for inducible bronchus‐associated lymphoid tissue (iBALT) in disease progression. Mechanisms underlying iBALT generation, particularly during chronic CS exposure, remain to be defined. Oxysterol metabolism of cholesterol is crucial to immune cell localization in secondary lymphoid tissue. Here, we demonstrate that oxysterols also critically regulate iBALT generation and the immune pathogenesis of COPD. In both COPD patients and cigarette smoke (CS)‐exposed mice, we identified significantly upregulated CH25H and CYP7B1 expression in airway epithelial cells, regulating CS‐induced B‐cell migration and iBALT formation. Mice deficient in CH25H or the oxysterol receptor EBI2 exhibited decreased iBALT and subsequent CS‐induced emphysema. Further, inhibition of the oxysterol pathway using clotrimazole resolved iBALT formation and attenuated CS‐induced emphysema in vivo therapeutically. Collectively, our studies are the first to mechanistically interrogate oxysterol‐dependent iBALT formation in the pathogenesis of COPD, and identify a novel therapeutic target for the treatment of COPD and potentially other diseases driven by the generation of tertiary lymphoid organs.
Inbred mouse strains exhibit differences in susceptibility to influenza A infections. However, the molecular mechanisms underlying these differences are unknown. Therefore, we infected a highly susceptible mouse strain (DBA/2J) and a resistant strain (C57BL/6J) with influenza A H1N1 (PR8) and performed genome-wide expression analysis. We found genes expressed in lung epithelium that were specifically downregulated in DBA/2J mice, whereas a cluster of genes on chromosome 3 was only down-regulated in C57BL/6J. In both mouse strains, chemokines, cytokines and interferon-response genes were up-regulated, indicating that the main innate immune defense pathways were activated. However, many immune response genes were up-regulated in DBA/2J much stronger than in C57BL/6J, and several immune response genes were exclusively regulated in DBA/2J. Thus, susceptible DBA/2J mice showed a hyper-inflammatory response. This response is similar to infections with highly pathogenic influenza virus and may serve as a paradigm for a hyper-inflammatory host response to influenza A virus.
The expression profile of KIR4.1 in glial cells and stage-dependent alterations of KIR4.1 IR in MS lesions are compatible with an immune response against KIR4.1 at least in a subset of MS patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.