The purpose of the study was to assess the validity and inter-bike reliability of 10 Wattbike cycle ergometers, and to assess the test-retest reliability of one Wattbike. Power outputs from 100 to 1000 W were applied using a motorised calibration rig (LODE) at cadences of 70, 90, 110 and 130 rev · min, which created nineteen different intensities for comparison. Significant relationships (P < 0.01, r = 0.99) were found between each of the Wattbikes and the LODE. Each Wattbike was found to be valid and reliable and had good inter-bike agreement. Within-bike mean differences ranged from 0.0 W to 8.1 W at 300 W and 3.3 W to 19.3 W at 600 W. When taking into account the manufacturers stated measurement error for the LODE (2%), the mean differences were less than 2%. Comparisons between Wattbikes at each of the nineteen intensities gave differences from 0.6 to 25.5 W at intensities of 152 W and 983 W, respectively. There was no significant difference (P > 0.05) between the measures of power recorded in the test-retest condition. The data suggest that the Wattbike is an accurate and reliable tool for training and performance assessments, with data between Wattbikes being able to be used interchangeably.
Robertson, C, Lodin-Sundström, A, O'Hara, J, King, R, Wainwright, B, and Barlow, M. Effects of pre-race apneas on 400-m freestyle swimming performance. J Strength Cond Res XX(X): 000-000, 2018-This study aimed to establish whether a series of 3 apneas before a 400-m freestyle time-trial affected swimming performance when compared with and combined with a warm-up. Nine (6 males and 3 females) regional to national standard swimmers completed four 400-m freestyle time-trials in 4 randomized conditions: without warm-up or apneas (CON), warm-up only (WU), apneas only (AP), and warm-up and apneas (WUAP). Time-trial performance was significantly improved after WUAP (275.79 ± 12.88 seconds) compared with CON (278.66 ± 13.31 seconds, p = 0.035) and AP (278.64 ± 4.10 seconds, p = 0.015). However, there were no significant differences between the WU (276.01 ± 13.52 seconds, p > 0.05) and other interventions. Spleen volume compared with baseline was significantly reduced after the apneas by a maximum of ∼45% in the WUAP and by ∼20% in WU. This study showed that the combination of a warm-up with apneas could significantly improve 400-m freestyle swim performance compared with a control and apnea intervention. Further investigation into whether long-term apnea training can enhance this response is justified.
Heat adaption through acclimatisation or acclimation improves cardiovascular stability by maintaining cardiac output due to compensatory increases in stroke volume. The main aim of this study was to assess whether 2D transthoracic echocardiography (TTE) could be used to confirm differences in resting echocardiographic parameters, before and after active heat acclimation (HA). Thirteen male endurance trained cyclists underwent a resting blinded TTE before and after randomisation to either 5 consecutive daily exertional heat exposures of controlled hyperthermia at 32 with 70% relative humidity (RH) (HOT) or 5-days of exercise in temperate (21 with 36% RH) environmental conditions (TEMP). Measures of HA included heart rate, gastrointestinal temperature, skin temperature, sweat loss, total non-urinary fluid loss (TNUFL), plasma volume and participant's ratings of perceived exertion (RPE). Following HA, the HOT group demonstrated increased sweat loss (p = 0.01) and TNUFL (p = 0.01) in comparison to the TEMP group with a significantly decreased RPE (p = 0.01). On TTE, post exposure, there was a significant comparative increase in the HOT group in left ventricular end diastolic volume (p = 0.029), SV (p = 0.009), left atrial volume (p = 0.005), inferior vena cava diameter (p = 0.041), and a significant difference in mean peak diastolic mitral annular velocity (e’) (p = 0.044). Cardiovascular adaptations to HA appear to be predominantly mediated by improvements in increased preload and ventricular compliance. TTE is a useful tool to demonstrate and quantify cardiac HA.
We investigated the effect of an acute creatine loading (25 g per day for 4 days) and longer-term creatine supplementation (5 g of creatine or 5 g of placebo per day for 2 months) on the performance of 22 elite swimmers during maximal interval sessions. After the acute creatine loading, the mean of the average interval swim times for all swimmers (n = 22) improved (44.3+/-16.5 s before vs. 43.7+/-16.3 s after supplementation; P<0.01). Three of the 22 swimmers did not respond positively to supplementation. After 2 months of longer-term creatine supplementation or placebo, neither group showed a significant change in swimming performance (38.7+/-13.5 s before vs. 38.7+/-14.1 s after for the creatine group; 48.7+/-18.0 s before vs. 48.7+/-18.1 s after for the placebo group). We conclude that, in elite swimmers, 4 days of acute creatine loading improves swimming performance significantly when assessed by maximal interval sessions. However, longer-term supplementation for 2 months (5 g of creatine per day) did not benefit significantly the creatine group compared with the placebo group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.