Vibrio parahaemolyticus is a marine bacterium that thrives in warm climates. It is a leading cause of gastroenteritis resulting from consumption of contaminated uncooked shellfish. This bacterium harbors two putative type VI secretion systems (T6SS). T6SSs are widespread protein secretion systems found in many Gram-negative bacteria, and are often tightly regulated. For many T6SSs studied to date, the conditions and cues, as well as the regulatory mechanisms that control T6SS activity are unknown. In this study, we characterized the environmental conditions and cues that activate both V. parahaemolyticus T6SSs, and identified regulatory mechanisms that control T6SS gene expression and activity. We monitored the expression and secretion of the signature T6SS secreted proteins Hcp1 and Hcp2, and found that both T6SSs are differentially regulated by quorum sensing and surface sensing. We also showed that T6SS1 and T6SS2 require different temperature and salinity conditions to be active. Interestingly, T6SS1, which is found predominantly in clinical isolates, was most active under warm marine-like conditions. Moreover, we found that T6SS1 has anti-bacterial activity under these conditions. In addition, we identified two transcription regulators in the T6SS1 gene cluster that regulate Hcp1 expression, but are not required for immunity against self-intoxication. Further examination of environmental isolates revealed a correlation between the presence of T6SS1 and virulence of V. parahaemolyticus against other bacteria, and we also showed that different V. parahaemolyticus isolates can outcompete each other. We propose that T6SS1 and T6SS2 play different roles in the V. parahaemolyticus lifestyles, and suggest a role for T6SS1 in enhancing environmental fitness of V. parahaemolyticus in marine environments when competing for a niche in the presence of other bacterial populations.
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-associated deaths worldwide. Given the efficacy of membrane proteins as therapeutic targets in human malignancies, we examined cell-surface receptors that may act as drivers of lung tumorigenesis. Here we report that the PROTOCADHERIN PCDH7 is overexpressed frequently in NSCLC tumors where this event is associated with poor clinical outcome. PCDH7 overexpression synergized with EGFR and KRAS to induce MAPK signaling and tumorigenesis. Conversely, PCDH7 depletion suppressed ERK activation, sensitized cells to MEK inhibitors and reduced tumor growth. PCDH7 potentiated ERK signaling by facilitating interaction of protein phosphatase PP2A with its potent inhibitor, the SET oncoprotein. By establishing an oncogenic role for PCDH7 in lung tumorigenesis, our results
Release of pro-inflammatory cytokines from both resident and invading leukocytes within the pancreatic islets impacts the development of Type 1 diabetes mellitus. Synthesis and secretion of the chemokine CCL2 from pancreatic β-cells in response to pro-inflammatory signaling pathways influences immune cell recruitment into the pancreatic islets. Therefore, we investigated the positive and negative regulatory components controlling expression of the CCL2 gene using isolated rat islets and INS-1-derived β-cell lines. We discovered that activation of the CCL2 gene by IL-1β required the p65 subunit of NF-κB and was dependent on genomic response elements located in the −3.6 kb region of the proximal gene promoter. CCL2 gene transcription in response to IL-1β was blocked by pharmacological inhibition of the IKKβ and p38 MAPK pathways. The IL-1β-mediated increase in CCL2 secretion was also impaired by p38 MAPK inhibition and by glucocorticoids. Moreover, multiple synthetic glucocorticoids inhibited the IL-1β-stimulated induction of the CCL2 gene. Induction of the MAP Kinase Phosphatase-1 (MKP-1) gene by glucocorticoids or by adenoviral-mediated overexpression decreased p38 MAPK phosphorylation, which diminished CCL2 gene expression, promoter activity, and release of CCL2 protein. We conclude that glucocorticoid-mediated repression of IL-1β-induced CCL2 gene transcription and protein secretion occurs in part through the upregulation of the MKP-1 gene and subsequent deactivation of the p38 MAPK. Furthermore, the anti-inflammatory actions observed with MKP-1 overexpression were obtained without suppressing glucose-stimulated insulin secretion. Thus, MKP-1 is a possible target for anti-inflammatory therapeutic intervention with preservation of β-cell function.
The proinflammatory cytokines IL-1β and IFN-γ decrease functional islet β-cell mass in part through the increased expression of specific genes, such as inducible nitric oxide synthase (iNOS). Dysregulated iNOS protein accumulation leads to overproduction of nitric oxide, which induces DNA damage, impairs β-cell function, and ultimately diminishes cellular viability. However, the transcriptional mechanisms underlying cytokine-mediated expression of the iNOS gene are not completely understood. Herein, we demonstrated that individual mutations within the proximal and distal nuclear factor-κB sites impaired cytokine-mediated transcriptional activation. Surprisingly, mutating IFN-γ-activated site (GAS) elements in the iNOS gene promoter, which are classically responsive to IFN-γ, modulated transcriptional sensitivity to IL-1β. Transcriptional sensitivity to IL-1β was increased by generation of a consensus GAS element and decreased correspondingly with 1 or 2 nucleotide divergences from the consensus sequence. The nuclear factor-κB subunits p65 and p50 bound to the κB response elements in an IL-1β-dependent manner. IL-1β also promoted binding of serine-phosphorylated signal transducer and activator of transcription-1 (STAT1) (Ser727) but not tyrosine-phosphorylated STAT1 (Tyr701) to GAS elements. However, phosphorylation at Tyr701 was required for IFN-γ to potentiate the IL-1β response. Furthermore, coactivator p300 and coactivator arginine methyltransferase were recruited to the iNOS gene promoter with concomitant displacement of the coactivator CREB-binding protein in cells exposed to IL-1β. Moreover, these coordinated changes in factor recruitment were associated with alterations in acetylation, methylation, and phosphorylation of histone proteins. We conclude that p65 and STAT1 cooperate to control iNOS gene transcription in response to proinflammatory cytokines by a coactivator exchange mechanism. This increase in transcription is also associated with signal-specific chromatin remodeling that leads to RNA polymerase II recruitment and phosphorylation.
Aberrant signaling through cytokine receptors and their downstream signaling pathways is a major oncogenic mechanism underlying hematopoietic malignancies. To better understand how these pathways become pathologically activated and to potentially identify new drivers of hematopoietic cancers, we developed a high-throughput functional screening approach using ex vivo mutagenesis with the Sleeping Beauty transposon. We analyzed over 1,100 transposon-mutagenized pools of Ba/F3 cells, an IL3-dependent pro-B-cell line, which acquired cytokine independence and tumor-forming ability. Recurrent transposon insertions could be mapped to genes in the JAK/ STAT and MAPK pathways, confirming the ability of this strategy to identify known oncogenic components of cytokine signaling pathways. In addition, recurrent insertions were identified in a large set of genes that have been found to be mutated in leukemia or associated with survival, but were not previously linked to the JAK/STAT or MAPK pathways nor shown to functionally contribute to leukemogenesis. Forced expression of these novel genes resulted in IL3-independent growth in vitro and tumorigenesis in vivo, validating this mutagenesis-based approach for identifying new genes that promote cytokine signaling and leukemogenesis. Therefore, our findings provide a broadly applicable approach for classifying functionally relevant genes in diverse malignancies and offer new insights into the impact of cytokine signaling on leukemia development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.