The spectral emission of gas-phase aluminum and aluminum oxide was measured during and immediately after exposure of a bulk-aluminum sample to a laser-induced spark produced by a focused, pulsed laser beam (Nd:YAG, 10-ns pulse duration, 35 mJ/pulse, lambda = 1064 nm). The spectral emission was measured as a function of time after the onset of the laser pulse, and it was also measured in different bath gases (air, nitrogen, oxygen, and helium).
Temperature measurements of high-explosive and combustion processes are difficult to obtain due to the speed and environment of the events. To overcome these challenges, we have characterized and calibrated a digital high-speed color camera that may be used to measure the temperature of such events. A two-color ratio method is used to calculate a temperature using the color filter array raw image data and a graybody assumption. If the raw image data are not available, temperatures may be calculated from the processed images or movies, depending on proper analysis of the digital color imaging pipeline. We analyze three transformations within the pipeline (demosaicing, white balance, and gamma correction) to determine their effect on the calculated temperature. Using this technique with a Phantom color camera, we have measured the temperature of exploded C-4 charges. The surface temperature of the resulting fireball was found to rapidly increase after detonation, and subsequently decayed to a constant value of approximately 1980 K.
We present experimental and computational results that explain some aspects of measured energy release in explosions of unconfined trinitrotoluene [TNT, C 6 H 2 (NO 2 ) 3 CH 3 ], and an aluminum-containing explosive formulation, and show how this energy release can influence shock wave velocities in air. In our interpretation, energy release is divided into early, middle, and late time regimes. An explanation is provided for the interdependence of the time regimes and their influence on the rate at which energy (detonation/explosion and afterburn) is released. We use a merging of the thermodynamic and chemical kinetic processes that predicts how chemical kinetics may determine the time delay of the afterburn of combustible gases produced by the initial detonation/explosion/fast reaction. The thermodynamic computer code CHEETAH is used to predict gaseous and solid products of early time energy release, and a chemical kinetic reaction mechanism (CHEMKIN format) is used to describe the subsequent afterburn of the gas phase products in air. Results of these calculations are compared with field measurements of unconfined explosions of 2 kg charge weights of TNT and an aluminum-containing explosive formulation.
A high-speed imaging pyrometer was developed to investigate the behavior of flames and explosive events. The instrument consists of two monochrome high-speed Phantom v7.3 m cameras made by Vision Research Inc. arranged so that one lens assembly collects light for both cameras. The cameras are filtered at 700 or 900 nm with a 10 nm bandpass. The high irradiance produced by blackbody emission combined with variable shutter time and f-stop produces properly exposed images. The wavelengths were chosen with the expected temperatures in mind, and also to avoid any molecular or atomic gas phase emission. Temperatures measured using this pyrometer of exploded TNT charges are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.