SUMMARY During progression of atherosclerosis, myeloid cells destabilize lipid-rich plaque in the arterial wall and cause its rupture, thus triggering myocardial infarction and stroke. Survivors of acute coronary syndromes have a high risk of recurrent events for unknown reasons. Here we show that the systemic response to ischemic injury aggravates chronic atherosclerosis. After myocardial infarction or stroke, apoE−/− mice developed larger atherosclerotic lesions with a more advanced morphology. This disease acceleration persisted over many weeks and was associated with markedly increased monocyte recruitment. When seeking the source of surplus monocytes in plaque, we found that myocardial infarction liberated hematopoietic stem and progenitor cells from bone marrow niches via sympathetic nervous system signaling. The progenitors then seeded the spleen yielding a sustained boost in monocyte production. These observations provide new mechanistic insight into atherogenesis and provide a novel therapeutic opportunity to mitigate disease progression.
Most tissues of the body harbor resident macrophages. Yet, macrophages are phenotypically and functionally heterogeneous, a reflection of the diversity of tissue environments in which they reside. In addition to maintaining tissue homeostasis and responding to invading pathogens, macrophages contribute to numerous pathological processes, making them an attractive potential target for therapeutic intervention. To do so, however, will require a detailed understanding of macrophage origins, the mechanisms that maintain them, and their functional attributes in different tissues and disease contexts.Macrophage ontology has long engendered controversy 1,2 . Nevertheless, the concept that tissue macrophages develop exclusively from circulating bone marrow-derived monocytes has prevailed for nearly a half century 3 . Accumulated evidence, however, including recent studies using sophisticated fate-mapping approaches, have determined that some tissue macrophages and their precursors are established embryonically in the yolk sac (YS) and fetal liver before the onset of definitive hematopoiesis [4][5][6][7][8][9][10][11] . Regardless of their origin, tissue macrophages can maintain themselves in adulthood by self-renewal independent of blood monocytes 12,13 .Gene-expression profiling of macrophage populations from several tissues has established that only a small number of transcripts are expressed by all macrophages 14 , indicating the importance of the context provided by the tissue when studying macrophage function in homeostasis and disease. The normal arterial wall contains many tissue resident macrophages that contribute crucially to immunity, tissue homeostasis and wound healing following injury 15. However, the regulatory networks, ancestry and mechanisms that maintain arterial macrophages remain unknown.Using gene expression analysis, we show that arterial macrophages constitute a distinct population among tissue macrophages. Multiple fate mapping approaches demonstrated that arterial macrophages arise embryonically from CX 3 CR1 + precursors and postnatally from bone marrow-derived monocytes that colonize the tissue during a brief period immediately after birth.In adulthood, arterial macrophages were maintained by CX 3 CR1-CX 3 CL1 interactions and local proliferation without significant further contribution from blood monocytes. Self-renewal also sustained arterial macrophages after severe depletion during polymicrobial sepsis, rapidly restoring them to functional homeostasis. ResultsPhenotype and gene expression profiling of arterial macrophages. (Fig. 1a).Principal component analysis revealed a distinct transcriptome in arterial macrophages, which clustered near other macrophage populations including microglia, alveolar macrophages, and splenic red pulp macrophages, as characterized by the Immunological Genome Consortium (Fig. 1b, Supplementary Fig. 1a) 14. Stringent comparison of gene-expression profiles among arterial, brain, alveolar and splenic red pulp macrophages revealed 212 transcripts that were at ...
Our findings demonstrate increased splenic metabolic activity after ACS and its association with proinflammatory remodeling of circulating leukocytes. Moreover, we observed that metabolic activity of the spleen independently predicted risk of subsequent CVD events. Collectively, these findings provide evidence of a cardiosplenic axis in humans similar to that shown in pre-clinical studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.