Turning an ear toward the talker can enhance spatial release from masking. Here, with their head free, listeners attended to speech at a gradually diminishing signal-to-noise ratio and with the noise source azimuthally separated from the speech source by 180° or 90°. Young normal-hearing adult listeners spontaneously turned an ear toward the speech source in 64% of audio-only trials, but a visible talker’s face or cochlear implant (CI) use significantly reduced this head-turn behavior. All listener groups made more head movements once instructed to explore the potential benefit of head turns and followed the speech to lower signal-to-noise ratios. Unilateral CI users improved the most. In a virtual restaurant simulation with nine interfering noises or voices, hearing-impaired listeners and simulated bilateral CI users typically obtained a 1 to 3 dB head-orientation benefit from a 30° head turn away from the talker. In diffuse interference environments, the advice to U.K. CI users from many CI professionals and the communication guidance available on the Internet most often advise the CI user to face the talker head on. However, CI users would benefit from guidelines that recommend they look sidelong at the talker with their better hearing or implanted ear oriented toward the talker.
Pre-1970s, diving was seen as a predominantly male working occupation. Since then it has become a popular hobby, with increasing access to SCUBA diving while on holiday. For a leisure activity, diving puts the auditory system at the risk of a wide variety of complaints. However, there is still insufficient consensus on the frequency of these conditions, which ultimately would require more attention from hearing-healthcare professionals. A literature search of epidemiology studies of eight auditory complaints was conducted, using both individual and large-scale diving studies, with some reference to large-scale non-diving populations . A higher incidence was found for middle ear barotrauma, eustachian tube dysfunction, and alternobaric vertigo with a high correlation among females. Comparing these findings with a non-diving population found no statistically significant difference for hearing loss or tinnitus. Increased awareness of health professionals is required, training, and implementation of the Frenzel technique would help resolve the ambiguities of the Valsalva technique underwater.
ObjectivesThis study investigated real-ear acoustical characteristics in terms of the sound pressure levels (SPLs) and frequency responses in situ generated from golf club drivers at impact with a golf ball. The risk of hearing loss caused by hitting a basket of golf balls using various drivers was then estimated.DesignCross-sectional study.SettingThe three driver clubs were chosen on the basis of reflection of the commonality and modern technology of the clubs. The participants were asked to choose the clubs in a random order and hit six two-piece range golf balls with each club. The experiment was carried out at a golf driving range in South Wales, UK.Participants19 male amateur golfers volunteered to take part in the study, with an age range of 19–54 years.Outcome measuresThe frequency responses and peak SPLs in situ of the transient sound generated from the club at impact were recorded bilaterally and simultaneously using the GN Otometric Freefit wireless real-ear measurement system. A swing speed radar system was also used to investigate the relationship between noise level and swing speed.ResultsDifferent clubs generated significantly different real-ear acoustical characteristics in terms of SPL and frequency responses. However, they did not differ significantly between the ears. No significant correlation was found between the swing speed and noise intensity. On the basis of the SPLs measured in the present study, the percentage of daily noise exposure for hitting a basket of golf balls using the drivers described above was less than 2%.ConclusionsThe immediate danger of noise-induced hearing loss for amateur golfers is quite unlikely. However, it may be dangerous to hearing if the noise level generated by the golf clubs exceeded 116 dBA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.