We report studies of preimplantation human embryo development that correlate time-lapse image analysis and gene expression profiling. By examining a large set of zygotes from in vitro fertilization (IVF), we find that success in progression to the blastocyst stage can be predicted with >93% sensitivity and specificity by measuring three dynamic, noninvasive imaging parameters by day 2 after fertilization, before embryonic genome activation (EGA). These parameters can be reliably monitored by automated image analysis, confirming that successful development follows a set of carefully orchestrated and predictable events. Moreover, we show that imaging phenotypes reflect molecular programs of the embryo and of individual blastomeres. Single-cell gene expression analysis reveals that blastomeres develop cell autonomously, with some cells advancing to EGA and others arresting. These studies indicate that success and failure in human embryo development is largely determined before EGA. Our methods and algorithms may provide an approach for early diagnosis of embryo potential in assisted reproduction.
A significant risk in the clinical application of human pluripotent stem cells (hPSCs), including human embryonic and induced pluripotent stem cells (hESCs and hiPSCs), is teratoma formation from residual undifferentiated cells. We have raised a monoclonal antibody (mAb) against hESCs, designated SSEA-5, which binds a novel antigen highly and specifically expressed on hPSCs--the H type-1 glycan. Separation of SSEA-5 high cells through fluorescence-activated cell sorting (FACS) drastically reduced teratoma formation potential. To ensure complete removal we identified additional markers exhibiting a large dynamic expression range during differentiation: CD9, CD30, CD50, CD90, and CD200. Immunohistochemistry (IHC) conducted on human fetal tissues and bioinformatics analysis of a microarray database revealed that concurrent expression of these markers is both common and specific to hPSCs. When applied to incompletely differentiated hESC cultures, immunodepletion with SSEA-5 and 2 additional markers completely removed teratoma formation potential.
BACKGROUNDPreimplantation genetic screening (PGS) has been used in an attempt to determine embryonic aneuploidy. Techniques that use new molecular methods to determine the karyotype of an embryo are expanding the scope of PGS.METHODSWe introduce a new method for PGS, termed ‘parental support’, which leverages microarray measurements from parental DNA to ‘clean’ single-cell microarray measurements on embryonic cells and explicitly computes confidence in each copy number call. The method distinguishes mitotic and meiotic copy errors and determines parental source of aneuploidy.RESULTSValidation with 459 single cells of known karyotype indicated that per-cell false-positive and false-negative rates are roughly equivalent to the ‘gold standard’ metaphase karyotype. The majority of the cells were run in parallel with a clinical commercial PGS service. Computed confidences were conservative and roughly concordant with accuracy. To examine ploidy in human embryos, the method was then applied to 26 disaggregated, cryopreserved, cleavage-stage embryos for a total of 134 single blastomeres. Only 23.1% of the embryos were euploid, though 46.2% of embryos were mosaic euploid. Mosaicism affected 57.7% of the embryos. Counts of mitotic and meiotic errors were roughly equivalent. Maternal meiotic trisomy predominated over paternal trisomy, and maternal meiotic trisomies were negatively predictive of mosaic euploid embryos.CONCLUSIONSWe have performed a major preclinical validation of a new method for PGS and found that the technology performs approximately as well as a metaphase karyotype. We also directly measured the mechanism of aneuploidy in cleavage-stage human embryos and found high rates and distinct patterns of mitotic and meiotic aneuploidy.
In the preimplantation mouse embryo, TEAD4 is critical to establishing the trophectoderm (TE)-specific transcriptional program and segregating TE from the inner cell mass (ICM). However, TEAD4 is expressed in the TE and the ICM. Thus, differential function of TEAD4 rather than expression itself regulates specification of the first two cell lineages. We used ChIP sequencing to define genomewide TEAD4 target genes and asked how transcription of TEAD4 target genes is specifically maintained in the TE. Our analyses revealed an evolutionarily conserved mechanism, in which lack of nuclear localization of TEAD4 impairs the TE-specific transcriptional program in inner blastomeres, thereby allowing their maturation toward the ICM lineage. Restoration of TEAD4 nuclear localization maintains the TE-specific transcriptional program in the inner blastomeres and prevents segregation of the TE and ICM lineages and blastocyst formation. We propose that altered subcellular localization of TEAD4 in blastomeres dictates first mammalian cell fate specification.A llocation of blastomeres to outside and inside positions during preimplantation mammalian development initiates specification of the first two cell lineages, the trophectoderm (TE) and the inner cell mass (ICM) (1, 2). Successful progression of TE and ICM fate specification and proper development of the preimplantation embryo depends on differential transcriptional programs that are instigated and maintained within the outer and inner cells. Gene-KO studies in mice showed TEAD4 as the master orchestrator of the TE-specific transcriptional program (3-5). TEAD4-null embryos do not mature to the blastocyst stage and TEAD4-null blastomeres lack expression of TE-specific master regulators like CDX2, GATA3, and EOMES (3, 4). However, they maintain expression of ICM-specific factors like OCT4 and NANOG.Interestingly, TEAD4 expression is maintained both in cells of TE and ICM lineages, as well as in the TE-derived trophoblast stem cells (TSCs) and ICM-derived ES cells (ESCs) (5, 6). Thus, questions are raised as to how TEAD4 selectively orchestrates the TE/TSC-specific transcriptional program but not the ICM/ ESC-specific transcriptional program. The current model predicts that the presence vs. the absence of a TEAD4 cofactor, yesassociated protein (YAP), modulates TEAD4 function at its target genes in outer vs. inner blastomeres (6), leading to the segregation of the TE and ICM lineages. However, YAP-null mouse embryos do not show preimplantation developmental defects (7), indicating that, unlike TEAD4, YAP function is dispensable during TE and ICM fate determination. It is proposed that another YAP-related cofactor, WWTR1 (i.e., TAZ), could compensate for the absence of YAP during early development (6). However, the mode of TAZ function during TE and ICM specification is unknown. Furthermore, direct targets of TEAD4 have not been identified in the TE or in trophoblast cells. Thus, definitive experiments have not been performed to conclude that loss of cofactor function/recruitmen...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.