CD47, a "don't eat me" signal for phagocytic cells, is expressed on the surface of all human solid tumor cells. Analysis of patient tumor and matched adjacent normal (nontumor) tissue revealed that CD47 is overexpressed on cancer cells. CD47 mRNA expression levels correlated with a decreased probability of survival for multiple types of cancer. CD47 is a ligand for SIRPα, a protein expressed on macrophages and dendritic cells. In vitro, blockade of CD47 signaling using targeted monoclonal antibodies enabled macrophage phagocytosis of tumor cells that were otherwise protected. Administration of anti-CD47 antibodies inhibited tumor growth in orthotopic immunodeficient mouse xenotransplantation models established with patient tumor cells and increased the survival of the mice over time. Anti-CD47 antibody therapy initiated on larger tumors inhibited tumor growth and prevented or treated metastasis, but initiation of the therapy on smaller tumors was potentially curative. The safety and efficacy of targeting CD47 was further tested and validated in immune competent hosts using an orthotopic mouse breast cancer model. These results suggest all human solid tumor cells require CD47 expression to suppress phagocytic innate immune surveillance and elimination. These data, taken together with similar findings with other human neoplasms, show that CD47 is a commonly expressed molecule on all cancers, its function to block phagocytosis is known, and blockade of its function leads to tumor cell phagocytosis and elimination. CD47 is therefore a validated target for cancer therapies.
Under normal physiologic conditions, cellular homeostasis is partly regulated by balancing pro- and anti-phagocytic signals. CD47 is highly expressed on several human cancers including acute myeloid leukemia, non-Hodgkin lymphoma, and bladder cancer, allowing cancer cells to evade phagocytosis by the innate immune system. Blockade of CD47 with a monoclonal antibody enables phagocytosis of cancer cells and leads to in vivo tumor elimination, but leaves most normal cells unaffected. In order for target cells to be phagocytosed upon blockade of an anti-phagocytic signal, we postulate that the cells must also display a potent pro-phagocytic signal. Here we identify calreticulin as a pro-phagocytic signal highly expressed on the surface of several human cancers including acute myeloid and lymphoblastic leukemias, chronic myeloid leukemia, non-Hodgkin lymphoma (NHL), bladder cancer, glioblastoma, and ovarian cancer, but minimally expressed on most normal cells. Increased CD47 expression correlated with high calreticulin levels on cancer cells, and was necessary for protection from calreticulin-mediated phagocytosis. Phagocytosis induced by anti-CD47 antibody required the interaction of target cell calreticulin with its receptor low density lipoprotein-receptor related protein (LRP) on phagocytic cells, as blockade of the calreticulin/LRP interaction prevented anti-CD47 antibody mediated phagocytosis. Lastly, increased calreticulin expression was an adverse prognostic factor in diverse tumors including neuroblastoma, bladder cancer, and NHL. These findings identify calreticulin as the dominant pro-phagocytic signal on several human cancers, provide an explanation for the selective targeting of tumor cells by anti-CD47 antibody, and highlight the balance between pro- and anti-phagocytic signals in the immune evasion of cancer.
CD47 is a widely expressed cell surface protein that functions as a regulator of phagocytosis mediated by cells of the innate immune system, such as macrophages and dendritic cells. CD47 serves as the ligand for a receptor on these innate immune cells, SIRP-alpha, which in turn delivers an inhibitory signal for phagocytosis. We previously found increased expression of CD47 on primary human acute myeloid leukemia (AML) stem cells, and demonstrated that blocking monoclonal antibodies directed against CD47 enabled the phagocytosis and elimination of AML, non-Hodgkin’s lymphoma (NHL), and many solid tumors in xenograft models. Here, we report the development of a humanized anti-CD47 antibody with potent efficacy and favorable toxicokinetic properties as a candidate therapeutic. A novel monoclonal anti-human CD47 antibody, 5F9, was generated, and antibody humanization was carried out by grafting its complementarity determining regions (CDRs) onto a human IgG4 format. The resulting humanized 5F9 antibody (Hu5F9-G4) bound monomeric human CD47 with an 8 nM affinity. Hu5F9-G4 induced potent macrophage-mediated phagocytosis of primary human AML cells in vitro and completely eradicated human AML in vivo, leading to long-term disease-free survival of patient-derived xenografts. Moreover, Hu5F9-G4 synergized with rituximab to eliminate NHL engraftment and cure xenografted mice. Finally, toxicokinetic studies in non-human primates showed that Hu5F9-G4 could be safely administered intravenously at doses able to achieve potentially therapeutic serum levels. Thus, Hu5F9-G4 is actively being developed for and has been entered into clinical trials in patients with AML and solid tumors (ClinicalTrials.gov identifier: NCT02216409).
A significant risk in the clinical application of human pluripotent stem cells (hPSCs), including human embryonic and induced pluripotent stem cells (hESCs and hiPSCs), is teratoma formation from residual undifferentiated cells. We have raised a monoclonal antibody (mAb) against hESCs, designated SSEA-5, which binds a novel antigen highly and specifically expressed on hPSCs--the H type-1 glycan. Separation of SSEA-5 high cells through fluorescence-activated cell sorting (FACS) drastically reduced teratoma formation potential. To ensure complete removal we identified additional markers exhibiting a large dynamic expression range during differentiation: CD9, CD30, CD50, CD90, and CD200. Immunohistochemistry (IHC) conducted on human fetal tissues and bioinformatics analysis of a microarray database revealed that concurrent expression of these markers is both common and specific to hPSCs. When applied to incompletely differentiated hESC cultures, immunodepletion with SSEA-5 and 2 additional markers completely removed teratoma formation potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.