Three available graphic-correlation analyses are used to calibrate mid-Palaeozoic conodont zonations: Sweet's scheme for the mid- to Upper Ordovician; Kleffner's for the mid- to Upper Silurian; and Murphy & Berry's for the lower and middle Lower Devonian. The scheme of Sweet is scaled by applying the high-precision U-Pb zircon date of Tucker and others for the Rocklandian and linked with that of Kleffner by scaling the graptolite sequence of the Ordovician-Silurian global stratotype section to fit two similarly derived dates from this sequence. The top of Kleffner's scheme, all of Murphy & Berry's, as well as standard zones to the Frasnian are calibrated by using tie-points of the latest Cambridge-BP time-scale (GTS 89). However, the recent microbeam zircon date by Claoué-Long and others for the Hasselbachtal Devonian-Carboniferous auxiliary stratotype is used to calibrate the standard Famennian zones. Also the similarly derived but preliminary determination reported by Roberts and others from the Isismurra Formation of New South Wales is tentatively taken as the top of the Tournaisian and so used to calibrate Tournaisian zones. Despite the considerable extrapolation required to compile these schemes and their inherent errors, the resultant time-scale closely agrees with other dates of Tucker and others from the Llanvirn as well as the GTS 89 Homerian-Gorstian tie-point. This suggests that stratigraphic methods can be usefully applied to geochronometry. The Llandovery appears to have lasted longer (16 m. y.) than usually envisaged and the Ordovician-Silurian boundary may need to be lowered to approximately 443.5 Ma. Certainly, chrons varied widely in duration and further stratigraphic studies to estimate their relative durations as well as high-resolution dating for their calibration will be crucial to more accurate biochronometries.
The unique macroevolutionary dataset of Aze & others has been transferred onto the TimeScale Creator visualisation platform while, as much as practicable, preserving the original unrevised content of its morphospecies and lineage evolutionary trees. This is a “Corrected Version” (not a revision), which can serve as an on-going historical case example because it is now updatable with future time scales. Both macroevolutionary and biostratigraphic communities are now equipped with an enduring phylogenetic database of Cenozoic macroperforate planktonic foraminiferal morphospecies and lineages for which both graphics and content can be visualised together. Key to maintaining the currency of the trees has been specification of time scales for sources of stratigraphic ranges; these scales then locate the range dates within the calibration series. Some ranges or their sources have undergone mostly minor corrections or amendments. Links between lineage and morphospecies trees have been introduced to improve consistency and transparency in timing within the trees. Also, Aze & others’ dual employment of morphospecies and lineage concepts is further elaborated here, given misunderstandings that have ensued. Features displayed on the trees include options for line styles for additional categories for range extensions or degrees of support for ancestor–descendant proposals; these have been applied to a small number of instances as an encouragement to capture more nuanced data in the future. In addition to labeling of eco- and morpho-groups on both trees, genus labels can be attached to the morphospecies tree to warn of polyphyletic morphogenera, and the lineage codes have been decoded to ease their recognition. However, it is the mouse-over pop-ups that provide the greatest opportunity to embed supporting information in the trees. They include details for stratigraphic ranges and their recalibration steps, positions relative to the standard planktonic-foraminiferal zonation, and applications as datums, as well as mutual listings between morphospecies and lineages which ease the tracing of their interrelated contents. The elaboration of the original dataset has been captured in a relational database, which can be considered a resource in itself, and, through queries and programming, serves to generate the TimeScale Creator datapacks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.