Dermacentor occidentalis Marx and Dermacentor variabilis (Say) commonly bite humans in California. These Dermacentor species may play a role in transmitting spotted fever group (SFG) rickettsiae to humans in many parts of the state where Dermacentor andersoni Stiles, a known vector for the etiologic agent of Rocky Mountain spotted fever, Rickettsia rickettsii, is absent. However, the specific rickettsial agents present in these ticks and their current prevalence are poorly understood. In total, 365 D. occidentalis and 10 D. variabilis were collected by flagging vegetation at 16 sites in five counties of southern California. The presence of SFG rickettsial DNA in these ticks was detected with rOmpA and GltA gene polymerase chain reaction (PCR) assays. The rickettsial species were identified by sequencing PCR amplicons. Of 365 D. occidentalis, 90 (24.7%) contained R. rhipicephali DNA, 28 (7.7%) contained DNA of unclassified genotype 364D, two (0.55%) contained R. bellii DNA, and one (0.3%) contained R. rickettsii DNA. Of 10 D. variabilis, four (40%) contained only R. rhipicephali. Four new genotypes of R. rhipicephali were discovered. For the first time, we detected R. rickettsii in D. occidentalis. Our study provides the first molecular data on the prevalence and species identification of SFG rickettsiae circulating in populations of these California ticks. Because neither D. variabilis nor R. rickettsii were abundant, 364D should be evaluated further as a potential cause of human SFG rickettsioses in southern California.
A previous study suggested that the genomes of the arenaviruses native to North America are a product of genetic recombination between New World arenaviruses with significantly different phylogenetic histories. The purpose of this study was to extend our knowledge of the principal host relationships and evolutionary history of the North American arenaviruses. The results of this study suggest that the large-eared woodrat (Neotoma macrotis) is a principal host of Bear Canyon virus and that the present-day association of Bear Canyon virus with the California mouse (Peromyscus californicus) in southern California represents a successful host-jumping event from the large-eared woodrat to the California mouse. Together, the results of analyses of viral gene sequence data in this study and our knowledge of the phylogeography of the rodents that serve as principal hosts of the New World arenaviruses suggest that genetic recombination between arenaviruses with significantly different phylogenetic histories did not play a role in the evolution of the North American arenaviruses.
Dermacentor occidentalis Marx and Dermacentor variabilis (Say) commonly bite humans in California. These Dermacentor species may play a role in transmitting spotted fever group (SFG) rickettsiae to humans in many parts of the state where Dermacentor andersoni Stiles, a known vector for the etiologic agent of Rocky Mountain spotted fever, Rickettsia rickettsii, is absent. However, the specific rickettsial agents present in these ticks and their current prevalence are poorly understood. In total, 365 D. occidentalis and 10 D. variabilis were collected by flagging vegetation at 16 sites in five counties of southern California. The presence of SFG rickettsial DNA in these ticks was detected with rOmpA and GltA gene polymerase chain reaction (PCR) assays. The rickettsial species were identified by sequencing PCR amplicons. Of 365 D. occidentalis, 90 (24.7%) contained R. rhipicephali DNA, 28 (7.7%) contained DNA of unclassified genotype 364D, two (0.55%) contained R. bellii DNA, and one (0.3%) contained R. rickettsii DNA. Of 10 D. variabilis, four (40%) contained only R. rhipicephali. Four new genotypes of R. rhipicephali were discovered. For the first time, we detected R. rickettsii in D. occidentalis. Our study provides the first molecular data on the prevalence and species identification of SFG rickettsiae circulating in populations of these California ticks. Because neither D. variabilis nor R. rickettsii were abundant, 364D should be evaluated further as a potential cause of human SFG rickettsioses in southern California.
Five microsatellite loci were used to develop multilocus genotypes for Neotoma macrotis (n = 128) and N. fuscipes (n = 29). Several statistical analyses were used to estimate genetic structure, levels of genetic variability, and degree of relatedness within groups of these 2 species. Samples of N. macrotis represented 2 groups and 4 population clusters throughout southern California. Samples of N. fuscipes represented 2 regions in northern and southern California. Genetic structure was detected among samples of N. macrotis and N. fuscipes at a regional level. Both species displayed moderate to high genetic diversity in terms of mean expected heterozygosity (0.939 and 0.804 for N. macrotis and N. fuscipes, respectively) and mean polymorphic information content (0.930 and 0.761 for N. macrotis and N. fuscipes, respectively). Mean relatedness values within regions and populations of N. macrotis indicated 4th-order levels of relatedness within groups (e.g., distant-cousin relationships). Mean relatedness values within regions of N. fuscipes indicated 2nd-order (e.g., half-sibling) relationships within the northern region and 3rd-order (e.g., cousin) relationships in the southern region. One locus in particular (Nma04) was determined to be diagnostic in distinguishing between these 2 species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.