Abstract. Concurrent pattern calculus (CPC) drives interaction between processes by comparing data structures, just as sequential pattern calculus drives computation. By generalising from pattern matching to pattern unification, interaction becomes symmetrical, with information flowing in both directions. CPC provides a natural language to express trade where information exchange is pivotal to interaction. The unification allows some patterns to be more discriminating than others; hence, the behavioural theory must take this aspect into account, so that bisimulation becomes subject to compatibility of patterns. Many popular process calculi can be encoded in CPC; this allows for a gain in expressiveness, formalised through encodings.
Pure pattern calculus supports pattern-matching functions in which patterns are first-class citizens that can be passed as parameters, evaluated and returned as results. This new expressive power supports two new forms of polymorphism. Path polymorphism allows recursive functions to traverse arbitrary data structures. Pattern polymorphism allows patterns to be treated as parameters which may be collected from various sources or generated from training data. A general framework for pattern calculi is developed. It supports a proof of confluence that is parameterised by the nature of the matching algorithm, suitable for the pure pattern calculus and all other known pattern calculi.
Traditional combinatory logic uses combinators S and K to represent all Turing-computable functions on natural numbers, but there are Turing-computable functions on the combinators themselves that cannot be so represented, because they access internal structure in ways that S and K cannot. Much of this expressive power is captured by adding a factorisation combinator F. The resulting SF-calculus is structure complete, in that it supports all pattern-matching functions whose patterns are in normal form, including a function that decides structural equality of arbitrary normal forms. A general characterisation of the structure complete, confluent combinatory calculi is given along with some examples. These are able to represent all their Turing-computable functions whose domain is limited to normal forms. The combinator F can be typed using an existential type to represent internal type information.
Abstract. Concurrent pattern calculus (CPC) drives interaction between processes by comparing data structures, just as sequential pattern calculus drives computation. By generalising from pattern matching to pattern unification, interaction becomes symmetrical, with information flowing in both directions. CPC provides a natural language to express trade where information exchange is pivotal to interaction. The unification allows some patterns to be more discriminating than others; hence, the behavioural theory must take this aspect into account, so that bisimulation becomes subject to compatibility of patterns. Many popular process calculi can be encoded in CPC; this allows for a gain in expressiveness, formalised through encodings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.