Background and purpose-Hypoxia is a hallmark of solid cancers and associated with metastases and treatment failure. During tumor progression epithelial cells often acquire mesenchymal features, a phenomenon known as epithelial-to-mesenchymal transition (EMT). Intratumoral hypoxia has been linked to EMT induction. We hypothesized that signals from the tumor microenvironment such as growth factors and tumor oxygenation collaborate to promote EMT and thereby contribute to radioresistance.
Angiotensin-converting enzyme (ACE)2 is a recently identified homologue of ACE. As ACE2 inactivates the pro-atherogenic angiotensin II, we hypothesize that ACE2 may play a protective role in atherogenesis. The spatiotemporal localization of ACE2 mRNA and protein in human vasculature and a possible association with atherogenesis were investigated using molecular histology (in situ hybridization, immunohistochemistry). Also, the ACE : ACE2 balance was investigated using enzymatic assays. ACE2 mRNA was expressed in early and advanced human carotid atherosclerotic lesions. In addition, ACE2 protein was present in human veins, non-diseased mammary arteries and atherosclerotic carotid arteries and expressed in endothelial cells, smooth muscle cells and macrophages. Quantitative analysis of immunoreactivity showed that total vessel wall expression of ACE and ACE2 was similar during all stages of atherosclerosis. The observed ACE2 protein was enzymatically active and activity was lower in the stable advanced atherosclerotic lesions, compared to early and ruptured atherosclerotic lesions. These results suggest a differential regulation of ACE2 activity during the progression of atherosclerosis and suggest that this novel molecule of the renin-angiotensin system may play a role in the pathogenesis of atherosclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.