Fluid flow is observed when a volume of passivated Ag nanoparticles suspended in chloroform is mixed with a water/ethanol (v/v) mixture containing acidified 11-mercaptoundecanoic acid. Following mechanical agitation, Ag nanoparticles embedded in a film are driven from the organic-aqueous interface. A reddish-brown colored film, verified by transmission electron microscopy to contain uniformly dispersed Ag nanoparticles, is observed to spontaneously climb the interior surface of an ordinary, laboratory glass vial. This phenomenon is recorded by a digital video recorder, and a measurement of the distance traveled by the film front versus time is extracted. Surface (interfacial) tension gradients due to surfactant concentration, temperature, and electrostatic potential across immiscible fluids are known to drive interface motion; this well-known phenomenon is termed Marangoni flow or the Marangoni effect. Experimental results are presented that show the observed mass transfer is dependent on an acid surfactant concentration and on the volume fraction of water in the aqueous phase, consistent with fluid flow induced by interfacial tension gradients. In addition, an effective desorption rate constant for the Marangoni flow is measured in the range of approximately 0.01 to approximately 1 s(-1) from a fit to the relative film front distance traveled versus time data. The fit is based on a time-dependent expression for the surface (interface) excess for desorption kinetics. Such flow suggests that purposeful creation of interfacial tension gradients may aid in the transfer of 2- and 3-dimensional assemblies, made with nanostructures at the liquid-liquid interface, to solid surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.