These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer‐reviewed by leading experts in the field, making this an essential research companion.
International audienceThe classical model of hematopoiesis established in the mouse postulates that lymphoid cells originate from a founder population of common lymphoid progenitors. Here, using a modeling approach in humanized mice, we showed that human lymphoid development stemmed from distinct populations of CD127(-) and CD127(+) early lymphoid progenitors (ELPs). Combining molecular analyses with in vitro and in vivo functional assays, we demonstrated that CD127(-) and CD127(+) ELPs emerged independently from lympho-mono-dendritic progenitors, responded differently to Notch1 signals, underwent divergent modes of lineage restriction, and displayed both common and specific differentiation potentials. Whereas CD127(-) ELPs comprised precursors of T cells, marginal zone B cells, and natural killer (NK) and innate lymphoid cells (ILCs), CD127(+) ELPs supported production of all NK cell, ILC, and B cell populations but lacked T potential. On the basis of these results, we propose a "two-family" model of human lymphoid development that differs from the prevailing model of hematopoiesis
Despite the fact that CD4+CD25+Foxp3+ regulatory T cells (Treg cells) play a central role in maintaining self-tolerance and that IL-17-producing CD4+ T cells (Th17 cells) are pathogenic in many autoimmune diseases, evidence to date has indicated that Th17 cells are resistant to suppression by human Foxp3+ Treg cells. It was recently demonstrated that CD39, an ectonucleotidase which hydrolyzes ATP, is expressed on a subset of human natural Treg cells. We found that although both CD4+CD25highCD39+ and CD4+CD25highCD39− T cells suppressed proliferation and IFN-γ production by responder T cells, only the CD4+CD25highCD39+, which were predominantly FoxP3+, suppressed IL-17 production, whereas CD4+CD25highCD39− T cells produced IL-17. An examination of T cells from multiple sclerosis patients revealed a normal frequency of CD4+CD25+CD127lowFoxP3+, but interestingly a deficit in the relative frequency and the suppressive function of CD4+CD25+CD127lowFoxP3+CD39+ Treg cells. The mechanism of suppression by CD39+ Treg cells appears to require cell contact and can be duplicated by adenosine, which is produced from ATP by the ectonucleotidases CD39 and CD73. Our findings suggest that CD4+CD25+Foxp3+CD39+ Treg cells play an important role in constraining pathogenic Th17 cells and their reduction in multiple sclerosis patients might lead to an inability to control IL-17 mediated autoimmune inflammation.
Pneumolysin (PLY) is a key Streptococcus pneumoniae virulence factor and potential candidate for inclusion in pneumococcal subunit vaccines. Dendritic cells (DC) play a key role in the initiation and instruction of adaptive immunity, but the effects of PLY on DC have not been widely investigated. Endotoxin-free PLY enhanced costimulatory molecule expression on DC but did not induce cytokine secretion. These effects have functional significance as adoptive transfer of DC exposed to PLY and antigen resulted in stronger antigen-specific T cell proliferation than transfer of DC exposed to antigen alone. PLY synergized with TLR agonists to enhance secretion of the proinflammatory cytokines IL-12, IL-23, IL-6, IL-1β, IL-1α and TNF-α by DC and enhanced cytokines including IL-17A and IFN-γ by splenocytes. PLY-induced DC maturation and cytokine secretion by DC and splenocytes was TLR4-independent. Both IL-17A and IFN-γ are required for protective immunity to pneumococcal infection and intranasal infection of mice with PLY-deficient pneumococci induced significantly less IFN-γ and IL-17A in the lungs compared to infection with wild-type bacteria. IL-1β plays a key role in promoting IL-17A and was previously shown to mediate protection against pneumococcal infection. The enhancement of IL-1β secretion by whole live S. pneumoniae and by PLY in DC required NLRP3, identifying PLY as a novel NLRP3 inflammasome activator. Furthermore, NLRP3 was required for protective immunity against respiratory infection with S. pneumoniae. These results add significantly to our understanding of the interactions between PLY and the immune system.
Hidradenitis suppurativa (HS) is a chronic, inflammatory, and debilitating disease of hair follicles with 1-4% prevalence and high morbidity. There is a dearth of information on the pathogenesis and immune dysregulation underlying HS; therefore, we carried out a detailed analysis of skin-infiltrating T cells. Cells isolated from skin biopsy samples and blood from HS patients and healthy control subjects were analyzed by 16-parameter flow cytometry to provide detailed profiles of CD4 T-cell subsets. We observed substantial infiltration of inflammatory T cells with a striking T helper (Th) type 17-skewed cytokine profile in HS skin; these cells expressed the Th17 lineage marker CD161 and IL-17, as well as proinflammatory cytokines GM-CSF, IL-22, IFN-γ, and tumor necrosis factor. Regulatory T cells were also enriched in HS lesional skin; however, the ratio of Th17 to regulatory T cells was nonetheless highly dysregulated in favor of Th17 cells. In contrast, lesional skin from anti-tumor necrosis factor-treated HS patients who showed substantial clinical improvement exhibited a significant reduction in the frequency of Th17 cells and normalization of the Th17 to regulatory T cell ratio. These data suggest that inhibition of pathogenic IL-17 via tumor necrosis factor blockade is associated with improvement in immune dysregulation in HS and may provide a rationale for targeting IL-17 in the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.