To gain a better understanding of the mechanisms by which cortisol suppresses growth during chronic stress in fish, we characterized the effects of chronic cortisol on food intake, mass gain, the expression of appetite-regulating factors, and the activity of the GH/IGF axis. Fish given osmotic pumps that maintained plasma cortisol levels at w70 or 116 ng/ml for 34 days were sampled 14, 28 and 42 days post-implantation. Relative to shams, the cortisol treatments reduced food intake by 40-60% and elicited marked increases in liver leptin (lep-a1) and brain preoptic area (POA) corticotropin-releasing factor (crf) mRNA levels. The cortisol treatments also elicited 40-80% reductions in mass gain associated with increases in pituitary gh, liver gh receptor (ghr), liver igfI and igf binding protein (igfbp)-1 and -2 mRNA levels, reduced plasma GH and no change in plasma IGF1. During recovery, while plasma GH and pituitary gh, liver ghr and igfI gene expression did not differ between treatments, the high cortisol-treated fish had lower plasma IGF1 and elevated liver igfbp1 mRNA levels. Finally, the cortisol-treated fish had higher plasma glucose levels, reduced liver glycogen and lipid reserves, and muscle lipid content. Thus, our findings suggest that the growth-suppressing effects of chronic cortisol in rainbow trout result from reduced food intake mediated at least in part by increases in liver lep-a1 and POA crf mRNA, from sustained increases in hepatic igfbp1 expression that reduce the growth-promoting actions of the GH/IGF axis, and from a mobilization of energy reserves.
Multilocus heterozygosity, aggressive and feeding behaviour, plasma cortisol levels and growth rate were evaluated among three groups of juvenile Chinook salmon Oncorhynchus tshawytscha: diploid, triploid and mixed groups of diploid and triploid fish. There was no difference between diploid and triploid fish in measurements of heterozygosity calculated using seven microsatellite loci, and these measurements did not correlate with performance measurements including feeding rate and growth rate. Aggression trials that examined small groups of fish revealed that after 4 days together in tanks, triploid fish were significantly less aggressive during feeding than diploid fish or fish in mixed groups. At the end of the trials, however, plasma cortisol levels did not differ among the three groups. Thirty-day growth trials in duplicate tanks of 60 fish revealed no difference in growth rate among diploid, triploid and mixed groups, but plasma cortisol levels were significantly lower in triploid fish than in either diploid fish or the mixed fish. Overall, independent of the above differences in aggressive behaviour and cortisol levels, these results suggest similar performance in diploid and triploid Chinook salmon, and thus provide support for the viability of triploid Chinook salmon culture in commercial aquaculture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.